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ABSTRACT

Apostolos Topalis
MULTIRESOLUTION WAVELET ANAYLSIS OF EVENT-RELATED EEG

POTENTIALS USING ENSEMBLE OF CLASSIFIER DATA FUSION TECHNIQUES
FOR THE EARLY DETECTION OF ALZHEIMER'S DISEASE

2005/06
Dr. Robi Polikar

Master of Science in Electrical Engineering

The recent advances and knowledge in medicine and nutrition have greatly

improved our average life expectancy. An unfortunate consequence of this longer life

span, however, is a dramatic increase in the number of individuals suffering from

dementia, and more specifically, from Alzheimer's disease (AD). Furthermore, AD

remains under-diagnosed and under-treated until its more severe stages due to lack of

standard diagnostic tools available to community clinics. A search for biomarkers that

will allow early diagnosis of the disease is therefore necessary to develop effective

medical treatments. Such a biomarker should be non-invasive, simple to obtain, safe,

inexpensive, accurate, and most importantly, must be made available to local health

clinics for maximum effectiveness. Event related potentials (ERPs) of the

electroencephalogram have the potential to become such a diagnostic biomarker for AD.

This work investigates the use of ERP signals for the early detection of AD. The

analysis of the ERP signals is accomplished through multiresolution wavelet

decomposition, producing time-frequency features in successive spectral bands. In

previous studies, these feature sets were concatenated and used as inputs to a neural



network classifier. This contribution investigates training an ensemble of classifiers on

each feature set separately, and combining the ensemble decisions in a data fusion

setting. Comparisons of intra-signal and inter-signal ensemble combinations are

presented in along with the benefits of using an ensemble of classifiers in data fusion.
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CHAPTER 1 - INTRODUCTION

The advancement of medicine and nutrition has greatly improved the human lifespan.

Over the last century, there has been a ten-fold increase in the number of Americans over

the age of 65 because of an increasing population and the elderly living longer. In 1900

there were about 3.1 million people over the age of 65 living in the U.S. which has grown

to more than 35 million today. By the year 2030, the number of over 65 year olds is

expected to double to 70 million [1]. Unfortunately, the longer life expectancy brings an

increased probability of individuals suffering from dementia.

Dementia includes a group of disorders causing a progressive decline in a

person's mental functioning. Symptoms include loss of memory, intellect, rationality,

social skills and normal emotional reactions. Some of the most common causes of

dementia include Alzheimer's disease (AD), vascular dementia (VaD), and Parkinson's

disease. Alzheimer's disease is the most common cause of dementia accounting for 50%-

70% of all cases [2]. Its prevalence increases with age where an estimated 5% of 65 year

olds are affected and over 30% of 85 year olds suffer from Alzheimer's. In the U.S.

alone, over 4.5 million suffer from Alzheimer's disease, and this number is expected to

reach 12 - 16 million by 2050. Furthermore, it is estimated that there are currently 18

million people affected by AD worldwide, and this too is projected to double in the next

20 years. Alzheimer's disease not only incapacitates its victim, but it causes grief for the

victim's caregiver and a devastating financial toll on the society with an annual cost of

over $100 billion [3, 4].

The symptoms of AD and several different types of dementia can be confused

with symptoms resulting from various medical conditions, psychological problems and



drug reactions. It is very important to recognize signs of dementia and differentiate

between conditions that imitate this disorder. Conditions that mimic the symptoms could

be reversible if treated early. Additionally, progressive dementias like AD respond better

to treatment if caught in their early stages [5].

Alzheimer's disease disrupts the brain's complex signaling system. The brain is

made up of billions of nerve cells, called neurons, connected in an immeasurable

network. This network of interconnected neurons distributes chemical messages as

electrical impulses by means of neurotransmitters. A neuron relays a message only when

the timed combination of incoming impulses has met a certain threshold. Multiply this

by millions of neurons firing simultaneously and the result is the control network which

allows us to speak, move, see, think, and remember.

Alzheimer's disease disturbs the intricate messaging network by means of two

abnormal structures in the brain: amyloid plaques and neurofibrillary tangles [6]. Plaques

are made of beta-amyloid, a toxic molecule, which originates from a normal protein

called amyloid precursor protein (APP). Enzymes breakdown APP and cause the beta-

amyloid fragments to cluster together into damaging plaques. The beta-amyloid plaques

block neurons from sending messages compromising the brain's communication network

[4].

Neurofibrillary tangles form due to the collapsing of protein tau. Normally,

protein tau stabilizes the internal support structure of neurons. In Alzheimer's disease,

changes cause threads of the protein tau to become entangled resulting in the

decomposition of the neuron [4, 7]. The relationship between amyloid plaques and

neurofibrillary tangles is illustrated in Figure 1.1.



Figure 1.1 - Illustration of Neurofibrillary tangles and Amyloid plaques [6].

These plaques and tangles can only be identified by examining the brain tissue under a

microscope, leaving autopsy as the only method for positive diagnosis. The progression

of AD is typically divided into three stages: mild, moderate and severe; or early-stage,

mid-stage and late-stage Alzheimer's. Janssen characterizes the different phases of the

disease, where the mild stage typically results in impairments of mental abilities such as

memory loss as well as mood swings. In the moderate stage, behavioral disturbances

usually further develop, whereas physical problems are dominant in the advanced stage,

and the patients cannot care for themselves. However, the individual course of the

disease is very variable [8].

The cause of Alzheimer's disease remains a mystery and there is no single factor

that leads to the diagnosis of AD. With the combination of multiple tests and measures,
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professionals believe they can diagnose AD with a high accuracy [5]. These tests include

a physical exam, in-depth interviewing of the patient and family, along with various

medical and psychological tests. There is currently no test that can diagnose AD,

therefore examinations are intended to rule out other causes of dementia, such as

nutritional deficiencies, infection, metabolic disorders, and drug effects.

Neuropsychological tests enable a clinician to analyze a patient's cognitive status.

Specifically, the mini mental state exam (MMSE) uses a scoring system that is helpful in

following mental status over time. Even though other causes of the symptoms can be

ruled out, the diagnosis is "probable" or "possible" Alzheimer's because the only

definitive test is postmortem examination of the brain [9].

1.1 MOTIVATION

Diagnostic markers are potential evidence in physiological systems that a person may

have AD or is likely to get the disease. The incubation period of the disease is unknown,

although it is clear that AD begins many years before characteristic symptoms appear.

Studies show that non-demented individuals had sufficient plaques for postmortem

diagnosis of AD, although there were no signs of cognitive impairment [10, 11]. In other

words, the harmful plaques begin to form decades before the symptoms of the disease

prevail in its victims. Since it is easier to prolong or even stop the progression of its

effects than it is to reverse the development, it is essential to identify biomarkers that will

detect the disease at an early stage. The discovery of markers with a correlation to AD

will not only be a useful tool in diagnosis, but could also identify early stage AD patients

for the development of new medical treatments [12].
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The search of these types of biomarkers results in many challenges due to the

inherent difficulty of the problem. Clinical diagnosis can be accurate but is only possible

for symptomatic patients. Experimental findings of potential biomarkers can only be

validated after lengthy longitudinal studies that follow a patient's condition from a pre-

symptomatic stage to autopsy verification of AD. Ideally, the biomarker or group of

biomarkers for AD should detect the illness at an early stage. The biomarker's diagnostic

test must also result in a high sensitivity for determining AD patients and a high

specificity for distinguishing between other dementias. The physiological measure of this

marker should be non-invasive, simple to perform, safe and acceptable to both patients

and physicians, and inexpensive to allow for its availability at local health clinics.

1.2 SCOPE OF THE THESIS

The objectives of this work include the analysis of event related potentials (ERPs),

obtained from the electroencephalogram (EEG), for the early diagnosis of Alzheimer's

disease. AD is the most common dementia in older patients (over 60), and remains

under-diagnosed and under-treated since there is no current test or procedure that is

diagnostic. Various experiments were run to find the best combinations of ERP

biomarkers for the early diagnosis of the disease. The ERP signals were invoked using

an oddball paradigm and recorded at three electrodes: Cz, Fz, and Pz. These signals were

generated on responses to two tones (target and novel). The analysis of the ERP signals

is accomplished through a wavelet decomposition producing coefficient sets in

successive spectral bands. Coefficients of each spectral band were used to train and test a

neural network ensemble of classifiers. The ensemble decisions were then combined in



various experiments to increase the overall generalization performance of the system.

The novelty of this work comes in the use of individual frequency bands separately rather

than the concatenation of all coefficients. Furthermore, the ensemble decisions based on

individual spectral bands are combined. This training and combination method reduces a

multi-dimensional problem into multiple lesser-dimensional problems by means of data

fusion.

1.3 ORGANIZATION OF THE THESIS

Chapter 2 provides a detailed literature review on a background to various methods for

early diagnosis of AD. Specific methods used in this study are provided in detail in

Chapter 3. These methods include the acquisition of ERP signals through an oddball

paradigm, the wavelet transform for feature extraction, the Learn++ algorithm for data

fusion, and several performance measures. Chapter 4 provides results on a variety of

experiments based on the methods described in Chapter 3. Furthermore, data fusion tests

and their results are described in detail in Chapter 4 including intra-signal and inter-signal

combinations. Chapter 5 consists of a discussion of the results along with conclusions

about the study and suggestions for future work.



CHAPTER 2 - BACKGROUND

Several studies have been conducted to identify distinguishing biomarkers for the

diagnosis of Alzheimer's disease [12]. These studies can be grouped into two categories:

those investigating chemical biomarkers and those investigating signals obtained from the

brain.

Studies on spinal fluids have lead to some progress in determining biochemical

markers for Alzheimer's disease. The beta-amyloid molecule, a 42-amino acid peptide,

can self-assemble into small clumps known as beta-amyloid-derived diffusible ligands

(ADDLs), as well as the plaques that were described in the introduction. Experiments

show that an increased level of ADDL has been directly related to neurological

dysfunctions such as memory loss. Researchers have also found above normal ADDL

levels from samples of people with AD. Furthermore, there is evidence of a correlation

between the levels of ADDL in the spinal fluid of AD patients and the concentration of

ADDL in the subject's brain. Thus, an ADDL spinal fluid measure could become a

potential diagnostic biomarker [13]. The cerebrospinal fluid tau protein (CSF-tau) has

also been linked to AD as an increase in the protein is found in most victims' brain.

These increased levels of CSF-tau, on the other hand, can also be found in other

dementias, more specifically, vascular dementia [14].

Cerebrospinal fluid samples for both of these potential markers are collected

using a lumbar puncture, also known as the spinal tap procedure, which can be very

painful, is available only in hospitals and some clinics, and is also very expensive. There

is an easier obtained chemical biomarker for AD called F2-isoprostane. F2-isoprostane is

measured through urine analysis, but has not been as dependable as CSF analysis or



ultimately postmortem tissue analysis for accurate diagnosis. Several studies show a

considerable increase in F2-isoprostane in patients with AD and even mild cognitively

impaired (MCI) subjects, compared to controls. However, additional independent studies

found no correlation between AD, MCI and control subjects [15-17].

Since the disease affects the communication network of the brain, measures of

electrical and functional brain activity should result in some correlation with the disease.

Structural brain imaging and positron emission tomography (PET) scans have been used

primarily for symptomatic AD, but evidence shows that imaging can help predict the

progression of the disease through its pre-symptomatic stages [12, 18, 19]. Data from

magnetic resonance imaging (MRI) studies show a relationship between a decline in

brain volume and a regression of cognitive performance. More specifically, the

hippocampal volume decreases in both AD and healthy individuals with age, but the rate

of change is more than 2.5 times faster in AD patients [20, 21]. Babiloni used low

resolution brain electromagnetic tomography (LORETA) to compare mild Alzheimer's

disease with vascular dementia and cognitively normal subjects. Furthermore, the study

investigated the sensitivity to different stages of severity. Even though the results show

promising correlations, evaluation of the clinical usefulness of the technique has not been

explored [22].

The electroencephalogram (EEG) is a medical device used to measure the

electrical activity of the brain through sensitive electrodes applied to the scalp. More

specifically, the EEG is the sum of the extra-cellular current flows of a large group of

neurons. The EEG was originally developed as a method for investigating mental

processes but later became a tool in medical diagnosis. Several studies focus on the



analysis of discriminate features between the EEG signals of patients with mild AD and

control subjects. EEG spectral analysis has also been popular in not only distinguishing

between Alzheimer's disease and controls [23, 24], but also between Alzheimer's and

other degenerative dementias [25, 26]. Variations of EEG analysis have also been

explored such as subjects with eyes open compared to eyes closed [27], or comparisons

of task difficulty [28]. Hogan investigated the use of a memory test while recording EEG

signals. Although, the performance on the memory test did not differ between patients

with AD and cognitively normal subjects , the EEG measurements showed some

distinguishing factors with AD patients possibly resulting from brain atrophy [29].

Since EEG signals are inherently non-stationary, Petrosian suggested that a

combined wavelet and recurrent neural network (RNN) approach may be useful in a

time-frequency analysis of long-term continuous EEGs for early recognition of AD.

However, the study was administered using a small cohort and should be extended on

larger patient populations before its clinical diagnostic value can be established. Further

lines of investigation might also require that EEGs be recorded from patients engaged in

certain mental (cognitive) activities [30].

Event related potentials (ERPs) are triggered based on the subject's reactions to

different stimuli, mainly auditory, visual or somatosensory. Auditory stimuli could

consist of single tones of pre-determined frequency, visual stimuli are produced by the

presence of a light or a change in a pattern like a checkerboard and somatosensory stimuli

are results of electrical stimulation of peripheral nerves. Additional measures involve the

patient's reaction to these stimuli by means of simple tasks. A procedure can produce no-

task evoked potentials, where the subjects are relaxed and instructed to perceive the



stimuli without performing any task. Alternatively, the oddball paradigm consists of two

different stimuli: a non-target (standard stimulus) and a less frequent target stimulus. The

subjects are instructed to react to the target stimulus by means of a simple task, such as

pressing a button.

ERPs have the potential to become a diagnostic biomarker for Alzheimer's

disease. Acquiring the signals simply involves an EEG recording along with an oddball

paradigm stimulus procedure. Recording ERP signals is a well-established, reliable, non-

invasive practice and can be made available at local community clinics. EEG signals

alone are said to be affected by coexisting medical illnesses, varying levels of anxiety and

drowsiness during recordings, amplifying the difficulty in identifying Alzheimer's

patients. On the other hand, components of ERP signals, which are based on cognitive

reactions, are believed to be insensitive to these concerns [31- 35].

ERP signals contain positive and negative peaks corresponding to the oddball

stimulus reactions. Neurological disorders affecting the temporal-parietal regions of the

brain, such as AD, have been known to deplete a specific positive peak, with an

approximate latency of 300ms, called the P300 [36]. Polich et al. have shown that

increased latency and decreased amplitude of P300, is associated with AD [31, 37].

Several other efforts, such as [36, 34, 38-42] have later confirmed the strong link between

Alzheimer's disease and the P300.

Further studies include the use of unexpected novel sounds in the oddball

paradigm. Findings of these experiments show promise in distinguishing AD from

various forms of dementia and also cognitively normal subjects [36]. However, despite

the statistical differences, the analysis of the P300, as a result of target or novel tones, in

10



amplitude and latency does not characterize individual patients as having AD. ERPs

from cognitively normal subjects may have a delayed or reduced P300, where those with

Alzheimer's disease, could produce a prominent P300, as shown in Figure 2.1. The

inability of classical statistical approaches in individually identifying specific cases

demands more sophisticated approaches for such individual identification.

ERP from a normal patient (Patient # 17) ERP from an AD natient (Patient # 1)

Time (ms)
(a)

0.

E

0

0.
E

0z

Time (ms)
(b)

Time (ms) Time (ms)

(c) (d)

Figure 2.1 - (a) evident P300 in normal patient (b) missing P300 in AD patient, (c) & (d) not
all individual cases follow this expected behavior.
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Automated classification algorithms, such as neural networks, have been

implemented for individual patient diagnosis. The accuracy of such classification

algorithms, as in any other application of neural networks, depends on the quantity and

the quality of the training data. The available data must be sufficiently large to represent

the unknown, true distribution of specific classes. The features extracted from the data

must also carry discriminatory information between different classes, such as AD and

normal; or AD and VaD. Published methods obtain the features of the ERPs in the time

domain by means of amplitude and latency of signal peaks such as the P300 [36, 40-47].

Other authors explore the frequency domain, more specifically, the power of different

spectral bands of the ERP [29, 48-55 ].

Since the ERP is a time and frequency varying (non-stationary) signal, a time-

frequency based analysis may be more suitable in identifying relevant features with

discriminating properties. The wavelet transform satisfies these requirements resulting in

various studies that apply such techniques to EEG analysis. Previous studies focus more

on non-AD analysis specifically for structural analysis of the P300 [56-68]. Other studies

investigated a wavelet analysis of EEG signals, along with a neural network classification

approach, but ERPs were not examined [51, 69] or the studies did not specifically target

the diagnosis of AD. For individual AD-specific diagnosis, there have been very few

studies that use an appropriate time-frequency analysis, such as discrete wavelet

transform, followed by neural network classification. The results of similar studies, such

as [30, 70-72], differ from this contribution due to several reasons: minimal sized cohorts

were used, sometimes between 10 and 30 subjects, making it difficult to resemble the

existing Alzheimer's disease class distribution. The clinically diagnosed AD patients

12



were not targeted at their earliest stages, and in some cases, raw EEG signals were used

rather than ERP signals.

While most of the methods have proven to be inconclusive, the ones showing

promise remain primarily university and research hospital based tools. While clinical and

neuropsychological evaluations achieve an average positive predictive value of 93%, this

level of expertise is typically available only at university or research hospitals, can be

very expensive, and remains beyond reach of most patients. Most patients unable to use

university or research facilities are evaluated at local community healthcare centers,

where the expertise and accuracy of AD specific diagnosis remains uncertain. A recent

study reported that despite the advantage of longitudinal follow up, a group of health

maintenance organization-based physicians had 83% sensitivity, and 53% specificity with

an overall accuracy of 75% for the clinical diagnosis of AD [73].

13



CHAPTER 3 - METHODS

3.1 EXPERIMENTAL SETUP

The current basis for AD diagnosis is a clinical evaluation, using a series of

neuropsychological tests, including interviews with the patient and their caregivers.

Ninety patients have been recruited by the Memory Disorders Clinic and Alzheimer's

Disease Research Center of University of Pennsylvania, according to the following

inclusion and exclusion criteria. The two test cohorts include probably AD patients and

cognitively normal subjects.

Inclusion criteria for cognitively normal cohort

> Age must be greater than 60

> Clinical Dementia Rating score = 0 (explained below)

> Mini Mental State Exam Score > 26 (explained below)

> No evidence of cognitive decline during the two years prior to enrollment

based on an interview with the subject's informant

Exclusion criteria for cognitively normal cohort

> Evidence of any central nervous system neurological disease (e.g. stroke,

multiple sclerosis, Parkinson's disease, or other form dementia) evaluated

by history or exam

> The use of sedative, anxiolytic or anti-depressant medications within 48

hours of ERP acquisition

Inclusion criteria for AD cohort:

> Age must be greater than 60
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SClinical Dementia Rating score >0.50;

> Mini Mental State Exam Score < 26;

SPresence of functional and cognitive decline over the previous 12 months

based on detailed interview with an informant

> Satisfaction of National Institute of Neurological and Communicative

Disorders and Stroke - Alzheimer's Disease and Related Disorders

Association NINCDS-ADRDA criteria for probable AD [74].

Exclusion criteria for AD cohort:

> Same as for the cognitively normal controls.

All subjects received a through medical history and neurological exam. Key

demographic and medical information, including current medications (prescription, over-

the-counter, and alternative medications) were noted. The evaluation included

standardized assessments for overall impairment, functional impairment, extrapyramidal

signs, behavioral changes and depression.

The inclusion criteria for AD cohort were designed to ensure that subjects were at

the earliest stages of the disease. One measure is the Clinical Dementia Rating (CDR)

scale, used to gauge AD progression. The test rating is based on six cognitive-functional

categories: memory, orientation, judgment, community affairs, home & hobbies, and

personal care. A five point scale is used to rate the function in each category: normal (0),

questionable impairment (0.5), mild impairment (1), moderate impairment (2), and severe

impairment (3). An interview with the subject and informant is used to rate each

category and special scoring rules are used to determine the overall CDR score.
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Another metric is the Mini Mental State Exam (MMSE), a standardized test

widely used to assess cognitive mental status. The test assesses orientation, attention,

immediate and short-term recall, language, and the ability to follow simple verbal and

written commands. In addition, MMSE provides a total score on a scale of cognitive

function. Cognitive performance as measured by the MMSE shows an inverse

relationship between MMSE scores and age. The MMSE medians range from 29 for

those 18 to 24 years of age, to 25 for individuals 80 years of age and older. Education

corresponds directly to the MMSE scores, where the median score is 29 for individuals

with at least 9 years of schooling, 26 for those with 5 to 8 years of schooling, and 22 for

those with 0 to 4 years of schooling [75, 76]. A score of less than 19 is considered to

indicate cognitive impairment. MMSE is not used for diagnosis alone, but rather for

assessing the severity of disease. The AD diagnosis itself is made based on the NINCDS-

ADRDA criteria for probable AD.

3.2 ODDBALL PARADIGM

An auditory oddball paradigm was used to obtain the ERP signals. The protocol

described by Yamaguchi et al, with slight modifications, was used [36]. Binaural

audiometric thresholds were first determined for each subject using a 1000 Hz tone. The

evoked response stimulus was presented to both ears at 60 dB above each subject's

auditory threshold. This procedure removes any bias to variations in hearing between

each patient. The stimulus consists of tone bursts 100 ms in duration, including 5 ms

onset and offset envelopes. Tones at a frequency of 1000 Hz were presented 65% of the

trials, and tones of 2000 Hz were presented 20% of the trials in a random sequence. The

remaining 15% of the trials consisted of unexpected novel sounds that were presented
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randomly. All trials totaled 1000 stimuli, and were delivered to each subject with an

inter-stimulus interval of 1.0 to 1.3 seconds. The subjects were instructed to press a

button each time they heard the 2000 Hz oddball (target) tone. Data collection typically

took less than 30 minutes, which included frequent breaks, approximately three minutes

of rest every five minutes. The experimental session was preceded by a 1-minute

practice session where the subjects sampled the difference between target and standard

tones.

ERPs were recorded from 19 electrodes embedded in an elastic cap. The electrode

impedances were kept below 20 k2. Recordings which contained obvious artifacts were

identified and rejected by the EEG technician. Each ERP potential was then amplified,

sampled at 256 Hz for each channel, and low-pass filtered. The ERPs for each channel

were then averaged, notched filtered at 59-61Hz and base-lined with respect to the pre-

stimulus interval. The final signals consisted of 257 samples with a one-second duration.

The signals, for each tone, of multiple trials, were synchronized and averaged to remove

variations in cortical activity. Furthermore, all responses with artifacts, responses to

missed targets, etc. were removed from the average, by the EEG technician, to obtain

consistent ERP responses.

In P300 studies, the ERPs were typically obtained from the Pz, Cz or Fz

electrodes of the 10-20 EEG electrode placement system, as seen in Figure 3.1. The Pz

electrode was analyzed since ERPs are known to be most prominent in the central parietal

regions of the cortex [64]. The Pz, Cz, and Fz electrodes measure the cognitive activity

in response to the tones rather than temporal lobe electrodes that would measure activity

in hearing the tones. Furthermore, the P300 can only be observed in response to target
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tones, and usually only responses to this tone are typically analyzed. The justification for

analyzing the remaining two electrodes is the relative and symmetric proximity of Cz and

Fz electrodes to the Pz electrode, see Figure 3.1. Additionally, the reason for analyzing

the responses to the novel tones is that there may be relevant information present in the

other components of the ERP, such as the P3a. Furthermore, these components may be

more prominent in responses to the novel tones.

Vertex
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Figure 3.1 - The 10-20 International EEG electrode placement system [94].

The ERPs have been separated into two groups, those coming from control

patients, and those coming from possible AD patients. The following figures show the

grand averages for each type of tone and each electrode. Standard Cz, Fz, and Pz are

shown in Figure 3.2 (a), (b) and (c) respectively. Target responses from the three

electrodes are shown in Figure 3.3, and novel responses are shown in Figure 3.4, in the

same format. The recording process begins 200ms before the stimulus is presented to the

subject. The vertical line in each of the figures represents the beginning of the stimulus.
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Also, all ERP plots are presented with an inverted y-axis to follow standard procedure in

viewing these types of signals.
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Figure 3.2 - Standard ERP signals for AD and Control patients from (a) Cz, (b) Fz and (c) Pz
electrodes.
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On average, the ERP responses to standard tones show little or no difference between AD

patients and the control patients.
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Figure 3.3 - Target ERP signals for AD and Control patients from (a) Cz, (b) Fz and (c) Pz
electrodes.
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The grand averages of ERP signals based on target tones produced a difference between

AD patients and cognitively normal subjects in the 0-600ms range.
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Figure 3.4 - Novel ERP signals for AD and Control patients from (a) Cz, (b) Fz and (c) Pz
electrodes.
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The averages of the ERP signals due to unexpected, novel sounds seem to carry

distinguishing information between AD and control patients.

3.3 TIME-FREQUENCY ANALYSIS

A standard procedure in signal processing is the frequency domain analysis obtained

through the Fourier transform (FT). The FT basically calculates the correlation between

the signal to be analyzed and complex sinusoids of different frequencies and provides

specific information on how much of each frequency exists in the signal. The continuous

FT can be derived by the function:

X(f)= x(t)e -i2"tdt (3.1)

where X(f) represents x(t) in the frequency domain. The function x(t) has limitations such

as being continuous and sufficiently smooth. The inverse transform can be calculated by:

x(t) = X X(f)ei2. t dt (3.2)

for every real number t. The inverse FT is the recombination of all frequency

components of x(t). Limitations on the FT are that it gives no information about time and

requires signals to be stationary. A stationary signal is a signal that repeats within the

sampled region.

The short-time Fourier transform (STFT), also known as the Gabor transform,

was developed to provide a time-frequency representation of the signal. This transform

uses the FT to determine frequency and phase content of localized sections of the signal.

The signal to be transformed is multiplied by a window function, which is usually one

near the origin and decays to zero at the edges. This type of window is used to suppress

boundary issues inherent in rectangular windows. The STFT applies the windowing
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function to the complex sinusoids of the Fourier transform and slides the window

throughout the signal. The STFT can be calculated by the equation:

X(r, f) = 00 x(t)w(t - )e-i2fdt (3.3)

where x(t) is the signal to be analyzed, w(t) is the windowing function, and r is the

translation of the window throughout the signal. An apparent difficulty is choosing the

width of the analysis window. If the window is too narrow, poor frequency resolution is

obtained, and if the window is too wide, the time localization becomes imprecise.

Grossmann and Morlet [77] introduced the wavelet transform in order to

overcome this problem. The main advantage of the technique is that the window size

varies. A wide window size captures the low frequencies while a narrow window size

captures the high frequencies. The varying window size allows the wavelet transform to

provide desirable time-frequency resolution in all frequency ranges. Furthermore, it does

not require the original signal to be stationary. Wavelet transforms can be classified into

two types: continuous wavelet transform (CWT) and discrete wavelet transform (DWT).

The difference between the two types is the CWT operates over every possible scale and

translation, while the DWT uses a specific set of scale and translation values. The CWT

is written as:

y(s, ) = x(t),dt (3.4)

where * denotes the complex conjugation, and x(t) is the function being decomposed into

a set of basis functions. The function, ,s,(t), is generated from the scale (s) (inverse of

frequency) and translation (r) of the mother wavelet y•(t) by Equation 3.5.

1 (t - (3.5)
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The factor 1/vIs is for energy normalization across different scales. The wavelet

transform only deals with general properties of its calculation. Unlike the FT, the

wavelet basis functions are not specified, moreover the analysis can be done using

custom wavelets specific to particular applications. In choosing a particular wavelet, two

main conditions must be satisfied, which give wavelets their name. First, the average

value of the wavelet in the time domain must be zero, more formally written as:

J1(t)dt =0 (3.6)

In other words, y(t) must be a wave. Second, the wavelet must have finite energy over

infinity and thus satisfy Equation 3.7.

fo(t)2dt <• (3.7)

The CWT is computed by continuously shifting a continuously scalable function

over an entire signal, while calculating the correlation between the signal and the wavelet

function. The CWT is therefore extremely redundant and unpractical for many

applications. The DWT, on the other hand, overcomes this problem by scaling and

translating in discrete steps. In other words, the time-scale space is sampled at discrete

intervals.

The DWT utilizes two sets of functions, a scaling function, <(t), and a wavelet

function, b(t), each associated with low-pass and high-pass filters, respectively. An

interesting property of these functions is that they can be obtained as a weighted sum of

the scaled (dilated) and shifted versions of the scaling function itself:

(t)= h[n]p(2t-n) (3.8)
n
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I(t) = g[n](2t-n) (3.9)
n

The scaling function 0,k(t) and wavelet function j,k(t) that is discretized at scalej and

translation k can be obtained from the original prototype function 0(t) = Ob,o(t) or b(t) =

o,o0(t) by:

Oj,k(t) = 2-j/2(2-it - k) (3.10)

Yj,k(t)= 2-j/27 (2- t-k) (3.11)

Different scale and translations of these functions allow differentiation of frequency and

time localizations of the signal. The coefficients (weights), h[n] and g[n], that satisfy

Equations (3.8) and (3.9) constitute the impulse responses of the low-pass and high-pass

filters used in the wavelet analysis, and define the type of the wavelet used in the

analysis. Decomposition of the signal into different frequency bands is therefore

accomplished by successive high-pass and low-pass filtering of the time domain signal.

The continuous ERP signals are considered to be the original time domain signal

x(t), where x(t) was sampled at 256 samples/second to form the discrete time signal x[n].

The discrete time signal x[n] is first passed through a half-band high-pass filter, g[n], and

a low-pass filter, h[n]. The original signal was sampled at 256 samples/second, and

therefore could only contain frequencies between 0-128 Hz (0-t radians), according to

the Nyquist-Shannon sampling theorem. After half-band filtering, the spectral bands of

the discrete signals are divided in half (0 - 7t/2) and (t/2 - rt), thus allowing half the

samples to be removed. This is accomplished by down sampling with a factor of 2.

Filtering followed by down sampling or subsampling constitutes one level of

decomposition, and it can be expressed as follows:
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dj [k]= yh,,h[k] = x[n] g[2k - n] (3.12)
n

a4 [k]= y1 [k]= x[n].h[2k -n] (3.13)
n

where Yhigh[k] and ylow[k] are the outputs of the high-pass and low-pass filters,

respectively, after the down sampling. The output of the high-pass filter, yhigh[k],

represents Level 1 DWT coefficients (di: level 1 detail coefficients). The output of the

low-pass filter, a,: the level 1 approximation coefficients, is further decomposed by

passing ylow[k] through another set of high-pass and low-pass filters, to obtain level 2

detail coefficients d2 and level 2 approximation coefficients, a2, respectively.

At each level, the procedure results in half the time resolution and double the

frequency resolution, allowing the signal to be analyzed at different frequency ranges

with different resolutions. Even though the time resolution is down sampled by a factor

of two for each level of decomposition, higher time resolution is unnecessary when

analyzing low spectral bands. Figure 3.5 displays the spectral bands for each level of the

wavelet transform, and the trend for further decomposition.

Level 3 Level 2 Level 1"'' X XA_______
16 32 64 128

Frequency (Hz)
Figure 3.5 - Frequency domain representation ofDWT decomposition.

The overall wavelet decomposition algorithm is illustrated in Figure 3.6, where

the frequency range analyzed with each set of coefficients is marked with "F". The
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length of each set of coefficients is also provided, which depends on the specific wavelet

used in the analysis. The decomposition in Figure 3.6 is obtained using the Daubechies

wavelets with 4 vanishing moments, whose corresponding filters h[n] and g[n] are of

length 8. The number of coefficients in each decomposition level is determined by the

filter convolved with the original signal, then down sampled. In the first level of

decomposition, the signal length is 257, and the filter length is 8, resulting in a filtered

signal with 264 points. After down sampling, it is reduced to 132 points and the process

repeats. An approximation signal Aj(t) and a detail signal Dj (t) can be reconstructed from

level j approximation and detail coefficients:

Aj(t) = a, [k] j,k (t) (3.14)
k

Dj (t) = dj [k].-j,k (t) (3.15)
k

The original signal x(t) can then be reconstructed from the approximation signal Aj(t) at

any level j and the sum of all detail signals up to and including level j:

x(t)= Aj(t)+ D ) (3.16)

j=-oo

= a,[k]Aj,k (t)+ Z d,[k]- Yj,k()
k j=-o k
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Figure 3.6- 7-level DWT decomposition [71].

In this study, the Daubechies wavelet with 4-vanishing moments (Db4) was used based

on previous studies of EEG analysis [71, 78]. Figure 3.7 shows the scaling function (p(t)

as well as the wavelet function y(t) for the Db4 wavelet. The decomposition low and

high-pass filters as well as the reconstruction low and high-pass filters are also illustrated
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in Figure 3.7. Figure 3.8 illustrates the reconstructed signals obtained at each level, of a

7-level decomposition, for the analysis of ERP signals.
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Figure 3.7- Daubechies-4 wavelet scaling function qp(t) and wavelet function y(t).

Whereas signal reconstruction is not required as part of this work, the reconstructed

signals in Figure 3.8 for both probable AD and cognitively normal patients indicate that

majority of the signals' energy lie in D6 - D7 and A7 . Comparing the time domain signals

of both patient types in Figure 3.8, it is difficult to distinguish between the AD and

normal patient: both show peaks at 300ms mimicking the P300. However, spectral bands

of the wavelet decomposition show differences that could contribute to the correct

classification of each signal. The results presented in Chapter 4 will later confirm this

observation.
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Figure 3.8 - Reconstructed signals of a 7-level wavelet decomposition for a probable AD
patient and a cognitively normal patient.

The EEG recording was initiated 200ms before the stimulus (to provide a baseline signal)

and continued for 800ms after the stimulus. Figures 3.3 and 3.4 show most of the

distinguishing information lays between 0 and 600ms of the stimulus, therefore the

coefficients of the wavelet decomposition falling within this interval were used in the

analysis.
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3.4 CLASSIFICATION

The classification process will be explained in detail in this section. The coefficients

resulting from the wavelet decomposition are used to train an artificial neural network

(ANN). An artificial neural network is a neural network model in artificial intelligence.

ANNs are mathematical models for defining a function f(x) = y. The description network

is used since the structure of an ANN resembles simple interconnected elements. In this

application, the inputs x are the wavelet coefficients, and the output y is the classification

of the patient. In training an ANN, the presented features are mapped to the correct

outputs by minimizing a cost function. The cost function is simply the misclassification

of any instance (patient). Testing the 'trained' network involves presenting an instance to

the ANN, that has not been used in training, and comparing the output of the ANN with

the known classification. Each trained ANN is referred to as a classifier.

A novelty of this work is the investigation of an ensemble of classifiers for the

classification of individual ERP signals. An ensemble based system, combines the

hypotheses of several diverse classifiers, rather than a single classifier decision. The

diversity in the classifiers is contributed to the use of different subsets of the training

data. This difference in training, results in varying decision boundaries which are

eventually combined to create a general ensemble decision. Numerous studies have

shown that such an approach can often outperform a single classifier system, is usually

resistant to over-fitting problems, and can often provide more stable results.

Additionally, an ensemble of classifiers can be used for data fusion. A single classifier

can be trained on data produced by a single source, where additional classifiers can be

trained on added sources of data. In data fusion, an ensemble of classifiers could be
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generated based on data from a single source. The fusion would involve the combination

of multiple ensembles creating a meta-ensemble of classifiers. For further understanding

of multiple classifier systems, refer to [79-90].

A single classifier system, using the multilayer perceptron (MLP), was used as an

initial classification method. Multiple experiments with several architectural parameters,

such as the number of hidden layer nodes ranging from 5 to 50, and error goals in the

0.005 to 0.1 range were used to find the optimal neural network architecture. After

several independent trials, 10 hidden layer nodes and an error goal of 0.01 were chosen

for all experiments. The Learn++ algorithm was used to generate ensemble systems,

consisting of MLP base classifiers, with a varying number of classifiers. In general, a 10-

classifier ensemble provided good results.

3.4.1 LEARN++ FOR DATA FUSION

Learn++, originally inspired in part by AdaBoost, [86] generates an ensemble of

classifiers, where each classifier is trained on a strategically updated distribution of the

training data that focuses on unseen and misclassified instances. Unlike AdaBoost,

which is designed to choose instances that have not been seen or learned by only the

previous classifier, Learn++ specifically targets these instances based on the ensemble's

decision. Furthermore, Learn++ has the ability to generate an ensemble of classifiers for

each data set coming from different sources, and appropriately combine the classifier

outputs to take advantage of the additional information in subsequent data sources. The

Learn++ algorithm for data fusion is discussed in detail below.
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In data fusion, each new source of features is treated as a new data set. In other

words, an ensemble of classifiers is trained on each feature set separately. The data sets

are denoted as DSk, k =1, 2, ... , K, where K is the total number of feature sources. For

each dataset, DSk, the algorithm inputs are: the training data Sk comprised of mk instances

xi along with their correct labels yi e Q = {q,-..wc}, i = 1, 2, ... , mk, for C number of

classes, a supervised classification algorithm BaseClassifier, generating individual

classifiers (a multi-layer perceptron in this case), and an integer Tk, denoting the number

of classifiers to be generated for the kth dataset. The pseudocode of the algorithm and its

block diagram, for training with data from the kth data source, are provided in Figures 3.9

and 3.10, respectively. The BaseClassifier can be any supervised learning algorithm,

where the parameters can be adjusted to ensure adequate diversity. Specifically, different

decision boundaries are generated with the use of subsets of the training data. Even

though each classifier is trained based on a subset of the training data, the generated

classifier must result in a minimum performance of 1/2 on the entire training data set. If

this condition is not met, the newly generated classifier is discarded and retrained. If

classifier outputs are class-conditionally independent, then the overall error

monotonically decreases as new classifiers are added. Originally known as the

Condorcet Jury Theorem (1786) [91-93], this condition is necessary and sufficient for a

two-class problem (C = 2), and it is sufficient, but not necessary, for C > 2.

At each iteration t, the Learn++ algorithm generates a new classifier. The

algorithm trains the BaseClassifier on a strategically selected subset TRt of the current

training data to generate hypothesis ht. The training subset TRt is chosen from the

training data according to a distribution Dt. The distribution D, is updated based on the
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misclassified instances and normalized over the entire training data Sk. The distribution

Dt determines which instances of the training data are more likely to be selected into the

training subset TR,. This distribution is initially set to be uniform, by initializing

w (i) = 1/mk, Vi, i = 1,2,*.., mk giving equal probability for each instance to be selected into

TR1. At each iteration t, the weights previously adjusted at iteration t-1 are normalized in

step 1. All references to a step in the algorithm refer to the pseudo-code in Figure 3.9.

AM (3.17)
Dt = wt jwt(i)i=1

to ensure a proper distribution. Training subset TRt is drawn according to Dt (step 2), and

the BaseClassifier is trained on TRt (step 3). A hypothesis ht is generated by the tth

classifier. This classifier produces an error et, which is computed as the sum of the

distribution weights of the misclassified instances on the current dataset Sk (step 4)

m (3.18)
E = E D(i) =ZD(i)[1 I (Xi) I] (3

i:ht (xi)yi i=l

where, [| |] evaluates to 1, if the predicate holds true, and 0 otherwise. If the condition ct

< 1/2 is met, the hypothesis ht is accepted and its error is normalized (step 5) to obtain

-Et (3.19)

If et > /2, the current hypothesis is discarded, and a new training subset is selected by

returning to step 2. For the addition of each classifier all hypotheses generated are

combined using weighted majority voting, to obtain the composite hypothesis Ht (step 6).

The contribution of each classifier to the composite hypothesis is based on a weight

inversely proportional to its normalized error. The hypotheses with smaller training
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errors are awarded a higher voting weight in the decision of Ht. The composite

hypothesis Ht is formally written as:

Ht = arg max log(1/fit) (3.20)
t:ht(x)=y

It can be shown that the weight selection of log(1/ft) is optimum for weighted majority

voting [88]. Similar to the individual classifier, the error of the composite hypothesis Ht

is computed as the sum of the distribution weights of the instances that were misclassified

by the ensemble decision Ht (step 6)

m (3.21)
Et = D(i) = D (i)[ Ht (x) • yi (]

i:Ht (xi)yi i=1

Since individual hypotheses that make up the composite hypothesis all have individual

errors less than 1/2, the composite error satisfies the expression 0 < Et< 1/2. The

normalized composite error Bt is obtained as

Et O<Bt <1 (3.22)
1- Et

and used for updating the distribution weights assigned to individual instances

Wt+l(i) =w(i 1-[|Ht(xi)Y y, |] t (W Bt , if Ht(xi)= Yi (3.23)
Wt+1 (i) = Wt (i)xBt = w (i)xJ

1 , otherwise

Equation (3.23) indicates that the distribution weights of the instances correctly classified

by the composite hypothesis Ht are reduced by a factor of Bt. Effectively, this increases

the weights of the misclassified instances, making them more likely to be selected into

the training subset of the next iteration. The final hypothesis Hfinal is obtained by

combining all hypotheses that have been generated thus far from all K data sources.

Readers familiar with the AdaBoost algorithm have noticed the overall

similarities, but also the key difference between the two algorithms. The weight update

rule of Leam++ targets instances that have not yet been correctly classified by the
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ensemble, whereas AdaBoost focuses on instances that have been misclassified by the

previous classifier. Specifically, in AdaBoost, the weight distribution is updated based

on the decision of a single previously generated hypothesis h, [86], whereas Learn++

updates its distribution based on the decision of the current ensemble through the use of

the composite hypothesis Ht.

Figure 3.10 conceptually represents the system level organization of the overall

algorithm for generating ensembles. Figure 3.11 illustrates the combination of ensembles

for data fusion applications where each feature set comes from different sources. An

ensemble of classifiers is generated for each of the feature sets, which are then combined

through weighted majority voting. For data fusion applications, however, the

contribution of each ensemble is adjusted based on the observed training performance on

each data source. This adjusted weight is then used to obtain the final hypothesis Hfinal.

H final (x) = arg max log
yeQ k=l t:ht ( x ) = y k

where, ak was chosen as the error, calculated as the misclassification ratio of the final

composite hypothesis on Sk:

m=k LH (x 1(3.25)
ak =  HE k (Xi) #Yi Mk

where HTk indicates the final composite hypothesis generated from the kth training data Sk

of feature set FSk.

During training, particular parameters were monitored to avoid classifiers with

infinite voting-weights. When a classifier perfectly learns the entire training data, it

results in et = 0, which causes It = 0, and hence the voting weight of ht to be infinite. A

36



classifier with infinite voting-weight outvotes all other classifiers and creates a decision

ht based on a single classifier. This situation can be avoided either by making classifiers

weaker so that the training error exceeds zero, or by adjusting et to be greater than zero.

Additionally, the number of classifiers generated for each dataset should be the same. If

one data set contains additional classifiers, the ensemble trained on this data set has a

greater contribution to the final hypothesis. The number of classifiers of a particular data

set should only differ when prior knowledge about each data set is known. Furthermore,

the addition of classifiers to each ensemble might not result in a considerable

performance increase, but when the final hypothesis is calculated, their addition in data

fusion could improve the performance significantly.
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Input: For each feature set DSk, k = 1, 2, ... , K
* Training data Sk = [(Xi, yi)], i=l, ... , mk with labels

Yi E=  =1-{(q9,. .C }*

* Supervised algorithm BaseClassifier.
* Integer Tk specifying the number of classifiers.

Do for each k = 1, 2, ... , K
Initialize w,(i) = l/mk, i, i= 1,2,-..,mk

Do for t = 1, 2, ... , Tk:

1. Set Dt = wt ki1 wt(i) so that Dt is a distribution.

2. Draw training TRt subset from Dt.
3. Obtain ht by training with data TRt
4. Calculate the error of ht on Sk, et = Dt (i)

i:ht (x,) yi

If E, > 1/2, discard ht and Go to Step 2.
5. Set fit=e/ (1-t). Obtain the composite hypothesis

through weighted majority voting
Ht = arg max log(l/ f t)

t:h (x)= y

6. Compute error of H: Et = Dt (i)
i:Ht (xi): yi

7. Set Bt = Et/(1-Et), and update the weights:

wt+1 (i)= t (i)X Bt , if Ht(xi) =Yi

1 , otherwise

Compute voting weights adjustment factor:
(mk _ I

ak = (Hk (Xi)# y11 mk

Output the final hypothesis:
K (11

H final(x)= arg max Z log
ye k=1 t:t (x)=y \tak

Figure 3.9 - Learn++ pseudocode for data fusion [94].
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Figure 3.10 - Block diagram of Learn++ algorithm [94].

Figure 3.11- Data fusion illustration [94].
Figure 3.11 - Data fusion illustration [94].
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3.4.2 VALIDATION PROCESS: LEAVE-ONE-OUT

In all cases listed below, generalization performance was obtained through leave-one-out

cross-validation. According to this procedure, a classifier is trained on all but one of the

available training data instances, and tested on the remaining instance. The classification

performance on this instance, 0 or 100%, is noted. The classifier is then discarded and a

new one, with identical architecture, is trained again on all but one training data instance,

this time leaving a different data instance out. Assuming that there are m training data

points, the entire training and testing procedure is repeated m times, leaving a different

instance as a test instance in each case. The mean of m individual performances is then

accepted as the estimate of the performance of the system. Although computationally

costly, the leave-one-out process is considered to be the most rigorous, reliable,

conservative and unbiased estimate of the true performance of the system, as it removes

the bias of choosing particularly easy or difficult instances into training or test datasets.

Due to the delicate nature of the application, and in order to obtain a reliable estimate of

the true performance of this approach, we decided to use the leave-one-out procedure

(instead of two-way splitting of the data into training and test datasets, or a k-fold cross-

validation) despite its computational complexity. In order to further confirm the validity

of the results, all leave-one-out validations were repeated five times. Since, the system

that results in the single best leave-one-out performance is implemented, the single best

leave-one-out results along with the average of five repetitions are provided.
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3.4.3 DIAGNOSTIC PERFORMANCE FIGURE

The overall performance measure used in gauging typical learning algorithms lacks the

class specific performances. For example, if the test data included 90 instances from

class A and 10 instances from class B, and the algorithm correctly classified all instances

from class A, but only half the instances from class B, the overall performance would be

95%. In medical tests and procedures, class descriptive measures are necessary for

patient evaluation. Sensitivity, specificity, positive and negative predictive values are

four commonly used quantities in medical diagnostics. Table 3.1 summarizes the

concepts described below.

Overall Generalization Performance (OGP): For learning algorithms, the overall

generalization performance is the average leave-one-out validation performance of the

classifiers on test data. Specifically, the OGP represents the average probability of a

correct decision. With medical tests, OGP refers to the accuracy of the test. OGP

describes the ratio of patients the classification system has correctly identified.

Sensitivity: Can be described as the probability of a positive diagnosis when the

condition is present in the patient. In other words, sensitivity is the ability of a medical

test to correctly identify the target group. In this study, sensitivity is the ratio of the

number of AD patients correctly identified by the classification system.

Specificity: Can be described as the probability of a negative diagnosis when the

condition is not present in the patient. In other words, specificity is the ability of a test to

correctly identify the control group. In this study, specificity is the ratio of cognitively

normal patients correctly identified by the classification system.

41



Positive Predictive Value (PPV): PPV is the probability that the patient has the

disease of those patients who test positive. It is calculated as the proportion of the sample

population that is identified by the test as the target group, who in fact belong to the

target group. In this study, PPV is the proportion of patients identified as AD patients by

the classification system, who actually have AD.

Negative Predictive Value (NPV): NPV is the probability that the patient does

not have the disease of those patients whose test results are negative. It is calculated as

the proportion of the sample population that is identified by the test as the control group,

who in fact belong to control group. In this study, NPV is the proportion of patients

identified as cognitively normal by the classification system, who are actually cognitively

normal.

Table 3.1 - Categorv labels for defining diagnostic auantities.

cr--4~

Number of
Patients \

Probable
AD

Cognitively
Normal

True Condition
Probable AD

A

C

Cognitively Normal

B

D

In Table 3.1, A is the number of patients classified as AD, and diagnosed as probable AD

by the clinical evaluation. On the other hand, B is the number of patients who are also

classified as AD, but clinically diagnosed as cognitively normal. Furthermore, C is the

number of patients who are classified as normal, but clinically diagnosed as probable AD.

Finally, D is the number of patients who are classified as cognitively normal, and
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clinically diagnoses as cognitively normal. A+B+C+D is the total number of patients.

Then,

A + D (3.26)
Overall Performance =- D (

A+B+C+D

A
Sensitivity = (3.27)

A+C

D
Specificity =-• (3.28)B+D

A
PPV = (3.29)

A+B

NPV = D (3.30)
C+D

3.5 METHOD OVERVIEW

The experimental setup included criteria to recruit patients at the earliest stages of

Alzheimer's disease along with age-matched cognitively normal subjects. The cohort

was subject to the oddball paradigm procedure, which invoked event-related potentials.

The ERP signals were then decomposed, using the wavelet transform, into successive

spectral bands. The coefficients from each spectral band were used as inputs into the

Learn++ algorithm for data fusion. A leave-one-out validation process and various

diagnostic measures were used to determine the feasibility of the approach.
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CHAPTER 4 - RESULTS

This chapter describes the results of various experiments included in this work. Section

4.1 provides details about the patient cohort and the extracted features. It also presents

results based on single ensemble classifiers. Section 4.2 focuses on intra-signal data

fusion combinations, while Section 4.3 presents inter-signal fusion. The best two-

ensemble systems are then combined in Section 4.4 followed by further analysis of data

fusion in Section 4.5.

4.1 - ENSEMBLE RESULTS

Ninety patients that have been recruited and 71were used in this analysis. Reasons for

excluding 19 of the total patients vary from the patient not being able to complete the test

to equipment failure. The final cohort consists of 34 Alzheimer's patients (pAGE= 7 5 ,

JMMSE= 24 .7 ), and 37 cognitively normal (AiAGE=7 6 , JMMSE= 2 9 .2 ). The oddball paradigm

provided the ERP signals from two types of stimuli tones (target and novel), and our

focus is on three specific EEG electrodes: Cz, Fz, and Pz.

Inherently, the DWT decomposition process results in coefficients from several

successive frequency bands within the 0-128 Hz frequency range. The relevant

information is known to reside between 0-16 Hz. Therefore, the entire coefficient feature

set of the DWT contains unnecessary components and only d4-d7 and a7 coefficients are

analyzed. Figure 4.1 illustrates the coefficients resulting from a 7-level decomposition,

moreover the number of coefficients of each level along with the spectral band. In the 0-

16 Hz frequency range, the wavelet decomposition produces five feature sets divided into

a7:(0-1 Hz), d7:(1-2 Hz), d6:(2-4 Hz), d5:(4-8 Hz), and d4:(8-16 Hz). In previous efforts
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these features were concatenated, forming a 62-dimensional feature set, and used for

training of a classifier.

0.2 .

a) o 0

-0.2i---- -----
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (ms)1
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0 50 100 150 200 250 300 350
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length-8
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Figure 4.1 - (a) Time domain ERP signal, (b) coefficients of a 7-level wavelet decomposition,
(c) wavelet coefficients representing 0-16 Hz.

The Learn++ algorithm, described in Chapter 3, has been used to generate the

ensemble of classifiers. Results using a 10-classifier ensemble, on the above mentioned

frequency bands, for six sets of ERP signals obtained from each patient (3 electrodes, 2

types of stimulus) are shown below. Ho1 describes the average performance of five

leave-one-out trials using a 10-classifier ensemble. Since the implemented system will

be based on a single leave-one-out trial, the column labeled, B-L10, denotes the best

single leave-one-out performance. CI is the confidence interval on five independent

leave-one-out trials, and Sn, Sp, PPV, NPV describe the above mentioned sensitivity,
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specificity, positive predicted value, and negative predicted value respectively. The

coefficients obtained from a DWT decomposition of an ERP signal, measured at a

specific electrode, in response to a particular tone will be referred to as [tone-electrode].

Table 4.1 - Performance values on ensemble systems trained on target-Cz coefficients for five
fruency bands.

Target CZ B-L10 H1  -±CI Sn Sp PPV NPV

(1-2 Hz) 54.93% 52.11% 3.50% 52.94% 51.35% 50.00% 54.30%
(2-4 Hz) 63.38% 59.72% 3.18% 60.59% 58.92% 57.64% 62.07%
(4-8 Hz) 59.15% 53.52% 5.10% 54.71% 52.43% 51.56% 55.59%

(8-16 Hz) 46.48% 42.25% 7.10% 42.35% 42.16% 39.96% 44.50%

Llb

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.2 - Ensemble performance results trained on target-Cz coefficients.

Table 4.1 shows the generalization performances of the 10-classifier ensembles trained

on target-Cz coefficients. Figure 4.2 illustrates the performance values along with

corresponding CI for each spectral band. The table indicates that the highlighted

frequency band (0-1 Hz) is the most accurate. In addition, this band produced the
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smallest confidence interval, and highest Sn, Sp, PPV, and NPV results compared to

other levels of decomposition.

Table 4.2 - Performance values on ensemble systems trained on target-Fz coefficients for five
fequency bands.

Target FZ B-L10 H10  ±CI Sn Sp PPV NPV

(0-1 Hz) 59.15% 53.52% 5.93% 49.41% 57.30% 51.42% 55.29%

(2-4 Hz) 63.38% 58.03% 5.85% 60.59% 55.68% 55.58% 60.72%
(4-8 Hz) 59.15% 54.08% 7.68% 52.35% 55.68% 52.08% 55.98%

(8-16 Hz) 56.34% 53.52% 2.47% 51.18% 55.68% 51.48% 55.39%

I
bLi

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.3 - Ensemble performance results trained on target-Fz coefficients.

Table 4.2 lists the generalization leave-one-out performances of the ensembles trained on

target-Fz features; here the best performing frequency band is (1-2 Hz). Figure 4.3

illustrates the performances listed in Table 4.2.
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Table 4.3 - Performance values on ensemble systems trained on target-Pz coefficients for five
freuency bands.

Target PZ B-L10 H 1  ±CI Sn Sp PPV NPV
(0-1 Hz) 63.38% 61.69% 1.92% 52.94% 69.73% 61.63% 61.73%
(1-2 Hz) 61.97% 56.62% 5.30% 54.12% 58.92% 54.78% 58.32%
(24Hz) 6479% 6366M' 078% 6471% 6270% 61.46% 6598%
(4-8 Hz) 52.11% 49.58% 2.28% 48.24% 50.81% 47.37% 51.67%

(8-16 Hz) 50.70% 45.92% 6.01% 48.82% 43.24% 44.38% 47.52%

I~I

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz

3
Performance, %

Figure 4.4 - Ensemble performance results trained on target-Pz coefficients.

Generalization performances obtained by using target-Pz coefficients are shown in Table

4.3. Average results with corresponding CI are illustrated in Figure 4.4. In this case, the

frequency band (2-4 Hz) is most accurate. It is important to note for target signals, each

electrode contributes its best distinguishing features from different frequency bands.

Furthermore, even though the best performing electrode for target signals has been the Pz

electrode, the differences are not statistically significant.
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Tables 4.4-4.6 summarize the generalization performance for novel-Cz, novel-Fz,

and novel-Pz feature sets respectively. The results are in the same format as Tables 4.1-

4.3, where the best performing frequency band is highlighted. The performance results

for novel tones are also illustrated in Figures 4.5-4.7.

Table 4.4 - Performance values on ensemble systems trained on novel-Cz coefficients for five
requency band.

Novel CZ B-L10 H10  ±CI Sn Sp PPV NPV
(0-1 Hz) 57.75% 53.80% 3.36% 54.12% 53.51% 51.72% 55.92%
(1-2 Hz) 60.56% 58.31% 3.18% 57.06% 59.46% 56.46% 60.10%

(4-8 Hz) 54.93% 50.42% 6.23% 48.82% 51.89% 48.16% 52.54%

(8-16 Hz) 49.30% 45.92% 2.65% 46.47% 45.41% 43.75% 48.08%

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz
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Figure 4.5 - Ensemble performance results trained on novel-Cz coefficients.
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Table 4.5 - Performance values on ensemble systems trained on novel-Fz coefficients for five
freuency bands.

Novel FZ B-L10 Ho1  ±CI Sn Sp PPV NPV
(0-1 Hz) 64.79% 58.31% 4.88% 55.88% 60.54% 56.47% 59.99%
(1-2 Hz) 60.56% 55.77% 4.03% 55.88% 55.68% 53.69% 57.88%

(4-8 Hz) 52.11% 49.01% 4.69% 52.35% 45.95% 47.18% 51.08%
(8-16 Hz) 53.52% 52.68% 1.56% 54.71% 50.81% 50.57% 54.96%

ULff

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz

-1

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.6- Ensemble performance results trained on novel-Fz coefficients.
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Table 4.6 - Performance values on ensemble systems trained on novel-Pz coefficients for five
frequenc bands.

Novel PZ B-L10 H10  ±CI Sn Sp PPV NPV
(0-1 Hz) 74.65% 71.83% 2.14% 65.88% 77.30% 72.72% 71.19%

(2-4 Hz) 71.83% 68.17% 3.18% 64.12% 71.89% 67.65% 68.74%
(4-8 Hz) 70.42% 66.48% 5.16% 65.29% 67.57% 64.90% 68.06%

(8-16 Hz) 57.75% 53.52% 4.95% 51.76% 55.14% 51.39% 55.54%

IL

0-1 Hz

1-2Hz

2-4Hz

4-8Hz

8-16Hz

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.7- Ensemble performance results trained on novel-Pz coefficients.

On average, the best performing novel-Cz and novel-Fz frequency bands do not out-

perform the any of the target signal accuracies. On the other hand, performances on

novel-Pz features have significantly achieved better results than each of the other

ensembles trained on coefficients in response to target tones.

Even though the highlighted frequency band performs best in each table, other

frequency bands contain relevant features for this problem. This can be seen in Table 4.6
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and Figure 4.7, where the spectral band (0-1 Hz) does not show statistical difference in its

performance, when compared to the (1-2 Hz) frequency range. From the above results, it

is also evident that, target signals have a higher sensitivity, while novel signals have

higher specificity accuracy. In other words, target signals perform better in correctly

classifying AD patients as having the disease, while novel signals perform better in

correctly identifying control patients as not having the disease. From these observations,

we can justify the inference that a combination of the relevant features may result in a

better overall performance.

4.2 - INTRA-SIGNAL DATA FUSION

While Learn++ was originally developed as an incremental learning algorithm, its

ensemble structure allows it to be used in data fusion applications as well. This is because

the algorithm can accept a new dataset even if it contains completely different features as

compared to the data the algorithm had previously seen. When used in data fusion mode,

Learn++ seeks to incrementally learn novel information content from datasets that come

from the same application but are composed of different features. A comparison of this

approach and the concatenation of features sets can be seen in the Appendix. The

following results are based on the best performing combination of two frequency bands

for each ERP signal.
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Table 4.7- Ensemble combination of best performing target-Cz coefficients.
Target CZ B-L10 H1o CI Sn Sp PPV NPV
(0-1 Hz) 63.38% 62.54% 1.56% 64.71% 60.54% 60.13% 65.18%

(2-4 Hz) 63.38% 59.72% 3.18% 60.59% 58.92% 57.64% 62.07%

DF (0-1,2-4Hz) 69.01% 65.07% 3.36% 65.88% 64.32% 62.93% 67.25%

0-1 H2

2-4Hz

DF

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.8 - Individual ensemble performance on target-Cz coefficient and Data Fusion
combination.

The ensemble combination of target-Cz coefficients of frequencies (0-1 Hz) and (2-4 Hz)

resulted in the best increase of accuracy, although the difference in performances is not

statistically significantly. Table 4.7 and Figure 4.8 show the individual performance

values with corresponding CI along with the data fusion results.
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Table 4.8- Ensemble combination of best performing target-Fz coefficients.
Target FZ B-L10 H10  CI Sn Sp PPV NPV
(1-2 Hz) 66.20% 62.54% 3.18% 62.35% 62.70% 60.61% 64.45%
(2-4 Hz) 63.38% 58.03% 5.85% 60.59% 55.68% 55.58% 60.72%

DF (1-4Hz)I 67.61% 163.66% 5.16% 60.00% 67.03% 62.63% 64.63%

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.9 - Individual ensemble performance on target-Fz coefficients and Data Fusion
combination.

Table 4.8 shows the results of ensemble data fusion between target-Fz coefficients at

frequency bands of (1-2 Hz) and (2-4 Hz). This combination does not result in a

statistically significant performance difference, as seen in Figure 4.9. Additionally, the

fusion of these two feature sets sacrifices the sensitivity performance (correctly classified

Alzheimer patients) for the increase of specificity performance (correctly classified

control subjects).
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Table 4.9 - Ensemble combination of best performing target-Pz coefficients.
Target PZ B-L10 Ho1  CI Sn Sp PPV NPV
(0-1 Hz) 63.38% 61.69% 1.92% 52.94% 69.73% 61.63% 61.73%

(1-2 Hz) 61.97% 56.62% 5.30% 54.12% 58.92% 54.78% 58.32%

(2-4 Hz) 64.79% 63.66% 0.78% 64.71% 62.70% 61.46% 65.98%

DF (1-4Hz) 169.01% 67.89%1 1.46% 67.65% 68.11% 66.19% 69.64%
DF (0-1,2-4Hz) 69.01% 167.32% 1.92% 68.82% 165.95% 65.02% 69.74%

I ..... I I I I I

0-1 Hz I.i. IIillll.II I Z ..

2-4Hz

. .1-4H...

DF:0-1,2-4Hz

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.10 - Individual ensemble performance on target-Pz coefficients and Data Fusion
combination.

The data fusion of ensembles trained on target-Pz coefficients, led to two well performing

combinations, seen in Table 4.10. Many observations can be made by this experiment.

First, the fusion between frequency bands (1-2 Hz) and (2-4 Hz) resulted in an increase in

both sensitivity and specificity. In this case, the ensemble fusion of coefficients between

(1-4 Hz) produced a statistically significant increase compared to the individual

ensembles, as seen in Figure 4.10. On the other hand, the fusion between frequency

bands (0-1 Hz) and (2-4 Hz), although resulting in a comparable overall accuracy,

sacrificed specificity accuracy to increase its sensitivity. More specifically, even though

there were more correctly classified AD patients, the number of correctly classified

control patients decreased.
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Table 4.10- Ensemble combination of best performing novel-Cz coefficients.

Novel CZ B-L10 H10  CI Sn Sp PPV NPV

(0-1 Hz) 57.75% 53.80% 3.36% 54.12% 53.51% 51.72% 55.92%

(1-2 Hz) 60.56% 58.31% 3.18% 57.06% 59.46% 56.46% 60.10%

DF (0-2Hz) 63.38% 56.34% 5.39% 55.29% 57.30% 54.09% 58.60%

0-1

1-2

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.11 - Individual ensemble performance on novel-Cz coefficients and Data Fusion
combination.

Results from the ensemble combination of the best performing novel-Cz coefficients, in

Table 4.10, show that data fusion does not always increase performance. In this case, a

single feature set containing frequencies (0-1 Hz) and (1-2 Hz) performs better than its

combination with (0-2 Hz) coefficients, see Figure 4.11. This experiment shows that if

there is no relevant information in each element of data fusion, the combination does not

produce improved results.
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Table 4.11 - Ensemble combination of best performing novel-Fz coe ficients.
Novel FZ B-L10 H 1o CI Sn Sp PPV NPV
(1-2 Hz) 60.56% 55.77% 4.03% 55.88% 55.68% 53.69% 57.88%
(2-4 Hz) 61.97% 58.59% 3.83% 55.88% 61.08% 56.90% 60.21%

DF (1-4Hz) 1 61.97% 159.72%1 2.65% 55.29% 63.78% 58.48% 60.81%

1-2Hz

2-4Hz

DF

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.12 - Individual ensemble performance on novel-Fz coefficients and Data Fusion
combination.

Table 4.11 reflects the ensemble combination performance of novel-Fz coefficients.

There is only a slight difference, which can be seen in Figure 4.12, in the fusion of

coefficients from frequency bands (1-2 Hz) and (2-4 Hz). In this case, there is an

increase in specificity at the cost of sensitivity. In other words, the fusion correctly

classified additional cognitively normal patients, but misclassified AD patients that were

previously correctly classified.
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Table 4.12 - Ensemble combination of best performing novel-Pz coefficients.
Novel PZ B-L10 Hio CI Sn Sp PPV NPV

(0-1 Hz) 74.65% 71.83% 2.14% 65.88% 77.30% 72.72% 71.19%

(2-4 Hz) 71.83% 68.17% 3.18% 64.12% 71.89% 67.65% 68.74%

DF(0-1,2-4Hz) 78.87% 177,75% 1.46% 75.29% 180.00% 177.66% 177.94%

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.13 - Individual ensemble performance on novel-Pz coefficients and Data Fusion
combination.

0.85

0.8

0.75

o0
o

O

E
o

1.

0.7

0.65

0.6

0.55
1 2 3 4 5 6 7 8

Number of fused classifiers from each Ensemble
9 10

Figure 4.14 -Data fusion performance from novel-Pz coefficients at (0-1 Hz) and novel-Pz
coefficients at (2-4 Hz).
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The data fusion between novel-Pz coefficients of frequency bands (0-1 Hz) and (2-4 Hz),

resulted in a statistically significant increase, compared to both individual ensembles.

This difference can be seen in Figure 4.13. Figure 4.14 illustrates the performance of two

individual ensembles as well as their combination through data fusion. As previously

noted, the final performance of 77.8% has been achieved using both 10-classifier

ensembles, resulting in a twenty classifier system. Therefore, each number on the x-axis

represents the number of classifiers each ensemble contributes to the fusion. The graph

shows the improvement resulting from the addition of each classifier.

The advantages of data fusion can be seen when there is an increase in both

sensitivity and specificity resulting in an overall increase in performance. Specifically, if

there is an increase in both sensitivity and specificity, patients that were misclassified by

individual ensembles are correctly classified after the combination of these ensembles.

On the other hand, if the sensitivity accuracy increases while specificity decreases the

fused ensemble system correctly classifies previously misclassified AD patients, but also

misclassifies previously correctly classified control subjects. Experiments in Section 4.2

provide examples where the combination of the best performing ensembles does not

result in the best fused system. For example, in Table 4.12, the best performing fused

ensemble system was trained on feature sets containing frequencies (0-1 Hz) and (2-4

Hz), but the best performing single-ensemble contains frequencies (1-2 Hz), shown in

Table 4.6.
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4.3 - INTER-SIGNAL DATA FUSION

Unlike intra-signal fusion, where information from different spectral bands of the same

signal are fused, in inter-signal data fusion, information is combined from different

spectral bands of different signal sources. Section 4.2 focused on the fusion of ensembles

trained from the same signal but with different frequency bands. Section 4.3 will focus

on combining ensembles based on signals generated from novel and target toness.

Section 4.2 experiments resulted in a best two-ensemble fused overall performance of

77.8% (average of 5 leave-one-out trials), with a single best leave-one-out performance

of 78.9%. The combined ensemble performance of coefficients from novel tone

responses between electrodes did not show an improvement when compared to the

individual ensembles. The best performing single-ensemble classifiers were generated

using novel-Pz coefficients, thus various combinations of these coefficients fused with

target single-ensemble classifiers are compared.

Table 4.13 - Data Fusion performance for the ensemble combination of novel-Pz coefficients
between (0-1 Hz) and target-Pz coe icients between (2-4 Hz).

B-L10 H10  CI Sn Sp PPV NPV
Novel PZ (0-1 Hz) 74.65% 71.83% 2.14% 65.88% 77.30% 72.72% 71.19%

Target PZ (2-4 Hz) 64.79% 63.66% 0.78% 64.71% 62.70% 61.46% 65.98%

Data Fusion 78.87% 73.24% 4.28% 70.59% 75.68% 72.78% 73.79%

No'1eIPZ 0-1 Hz

TargetPZ 2-4Hz

DataFusion

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.15 - Data Fusion performance of novel-Pz coefficients at (0-1 Hz) and target-Pz
coefficients at (2-4 Hz).
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Table 4.13 and Figure 4.15 summarize the fused generalization performance of novel-Pz

and target-Pz coefficients at (0-1 Hz) and (2-4 Hz) respectively. There is a slight increase

in the performance due to an increased sensitivity measure, but also a decrease in the

specificity compared to the individual ensembles.

Table 4.14 - Data Fusion performance for the ensemble combination of novel-Pz coefficients
between (1-2 Hz) and target-Pz coeficients between (2-4 Hz).

B-L10 Hlo CI Sn Sp PPV NPV
Novel PZ (1-2 Hz) 74.65% 72.68% 2.35% 71.76% 73.51% 71.57% 73.96%
Target PZ (2-4 Hz) 64.79% 63.66% 0.78% 64.71% 62.70% 61.46% 65.98%

Data Fusion 78.87% 76.34% 1.92% 78.82% 74.05% 73.69% 79.19%

NoelPZ 1-2Hz

TargetPZ 2-4Hz

DataFusion.

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.16 - Data Fusion performance of novel-Pz coefficients at (1-2 Hz) and target-Pz
coefficients at (2-4 Hz).
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Figure 4.17- Data fusion performance from novel-Pz coefficients at (1-2 Hz) and target-Pz
coefficients at (2-4 Hz).

The combination of novel-Pz coefficients at (1-2 Hz) with target-Pz coefficients at (2-4

Hz), resulted in a noteworthy increase of overall performance. Furthermore, the fused

performance is comparable to the best intra-signal accuracy of 77.8%. Figure 4.16

illustrates the performance results in Table 4.14 including respective confidence intervals.

Similar to Figure 4.14, Figure 4.17 also demonstrates the point that each classifier added

to the ensemble might not make a difference within its own ensemble, but contributes to

the overall fusion. In this case, the first classifier, trained on target-Pz coefficients at (2-4

Hz) performs about the same as the entire ensemble at 64%. In contrast, its decision-

making significantly increases the overall accuracy of the fused system.
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Table 4.15 - Data Fusion performance for the ensemble combination of novel-Pz coefficients
between (2-4 Hz) and target-Pz coeicients between (2-4 Hz).

B-L10 Hio CI Sn Sp PPV NPV

Novel PZ (2-4 Hz) 71.83% 68.17% 3.18% 64.12% 71.89% 67.65% 68.74%

Target PZ (2-4 Hz) 64.79% 63.66% 0.78% 64.71% 62.70% 61.46% 65.98%

Data Fusion 74.65% 69.01% 4.46% 69.41% 68.65% 67.10% 70.98%

NovelPZ 2-4Hz

TargetPZ 2-4Hz

DataFusion..

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.18 - Data Fusion performance of novel-Pz coefficients at (2-4 Hz) and target-Pz
coefficients at (2-4 Hz).

Table 4.15 and Figure 4.16 present a slight performance increase, after the fusion of

ensembles generated with novel-Pz coefficients and target-Pz coefficients of the same

frequency range (2-4 Hz). Additional various combinations did not show improvement

of the data fusion systems compared to the individual ensembles.

4.4 - FOUR-ENSEMBLE SYSEMS

Experiments from both Sections 4.2 and 4.3 produced similar performance values.

Simulations in Section 4.2, comparing intra-signal combinations, resulted in a best data

fusion performance of 77.8%, when combining novel-Pz coefficients at (0-1 Hz) and

novel-Pz coefficients at (2-4 Hz). Tests in Section 4.3, comparing inter-signal
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combinations, resulted in a best data fusion performance of 76.3 %, when combining

novel-Pz coefficients at (1-2 Hz) and target-Pz coefficients at (2-4 Hz). The sensitivity

values are 75.3% and 78.8% from the best experiments in Sections 4.2 and 4.3,

respectively. The specificity measures are 80% and 74% respectively. The next intuitive

experiment would suggest combining all four ensembles to increase the generalization

performance.

Table 4.16- Four-ensemble data fusion.
B-L10 H1o CI Sn Sp PPV NPV

NP(0-1 Hz, 2-4 Hz) 78.87% 77.75% 1.46% 75.29% 80.00% 77.66% 77.94%

NP(1-2Hz),TP(2-4Hz) 78.87% 76.34% 1.92% 78.82% 74.05% 73.69% 79.19%

DF- 4 ensemble 78.87% 77.18% 1.46% 72.94% 81.08% 77.98% 76.56%

Table 4.16 includes the results of data fusion with four ensembles. The four ensembles

used were the best performing combinations from sections 4.2 and 4.3. In this case, the

combination did not result in an increase of generalization performance. A slight

increase of specificity resulted in the combined system at the cost of sensitivity

performance.

4.5 - ENSEMBLE DATAFUSION

Results from Section 4.1 are based on 10-classifier systems. In most cases, the

performance of the entire system is not significantly better than a single classifier. In

other words, the first classifier of the system produces comparable results to the 10-

classifier system. Although additional classifiers, in an ensemble, do not provide

improvement with this application, the number of classifiers in a data fusion setting does
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affect the accuracy of the system. Graphical representations of the best results from

Sections 4.2 and 4.3 are further analyzed below.

In both experiments, illustrated in Figures 4.14 and 4.17, the addition of the 10
th

classifier increases the overall data fusion performance. The upward slope of the data

fusion performance suggests that additional classifiers could continue to enhance the

performance.

Table 4.17- Data Fusion performance of 20-classifer ensembles trained on novel-Pz
coefficients at (0-1 Hz) and target-Pz coefficients at (2-4 Hz).

B-L10 Hio CI Sn Sp PPV NPV
Novel PZ (0-1 Hz) 74.65% 72.96% 1.92% 67.06% 80.54% 76.01% 72.77%
Novel PZ (2-4Hz) 71.83% 68.17% 3.18% 64.12% 71.89% 67.65% 68.74%

20-classifier-DF 81.69% 179.15% 1.92% 75.29% 182.70% 80.08% 78.47%

TargetPZ 2-4Hz

DataFusion

0 10 20 30 40 50 60 70 80 90
Performance, %

Figure 4.19 - Data Fusion performance of 20-classifer ensembles trained on novel-Pz
coefficients at (0-1 Hz) and target-Pz coefficients at (2-4 Hz).

Table 4.17 tabulates the results of two 20-classifier ensembles, trained on novel-Pz

coefficients at (0-1 Hz) and target-Pz coefficients at (2-4 Hz), and their decision fused

combination. Figure 4.19 illustrates the performance of each ensemble, the combined

system along with confidence intervals for each.
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Figure 4.20 - Data fusion performance from novel-Pz coefficients at (0-1 Hz) and target-Pz
coefficients at (2-4 Hz) using 20-classifer systems.

This experiment resulted in an overall increase of generalization performance (five leave-

one-out trials) of 79.2%, as well as the best single leave-one-out trial at 81.7%. The

system resulted in medical diagnostic measures of 75.3% for sensitivity, 82.7% for

specificity and 80.1% for PPV. The increasing trend in Figure 4.14 is extended in Figure

4.20, with the combination of two 20-classifier ensembles. The fusion performance in

Figure 4.20 begins to stabilize after the addition of about 16 classifiers. A slight decrease

is noticed with the addition of the 20
th classifier, which is believed to be a result of the

low number of trials. Furthermore, the peak average performance exceeds 80% with data

fusion using 18-classifier ensembles. This system also produced the maximum single

leave-one-out performance of 83.1%. The overall performance exceeds the 75%

diagnostic performance of trained physicians at community based healthcare clinics.

This comparison suggests that the procedures and approaches described in this work

show promise in the development of a tool for the early detection of AD.
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CHAPTER 5 - CONCLUSIONS

The application of this work consisted of an automated approach for the early diagnosis

of Alzheimer's disease. The approach has used a non-invasive and cost-effective

biomarker whose measure can be made available in a community healthcare clinic

setting. The difficulty of this problem lies in the early diagnosis of the disease, during

which obvious symptoms are not evident in the patients. Strict inclusion and exclusion

criteria were followed in the subject recruitment to remove any unwanted bias during the

signal acquisition. The procedure includes an oddball paradigm, used to invoke event

related potentials in the EEG signals. ERP signals from the task related target tones and

unexpected novel tones are recorded then analyzed using multi-resolution wavelet

decomposition. The decomposition results in a set of coefficients for successive

frequency bands. Feature level fusion and decision level fusion were compared in

combining information from the multiple feature sets. On average, decision level fusion

out-performed the individual ensembles and feature level fusion. Therefore, each set of

coefficients were used to train an ensemble of classifiers. Classification was then

achieved by combing multiple ensembles of classifiers trained on different feature sets.

This technique, as presented, determines the discriminatory information in the ERP

signals and uses a decision fusion to increase generalization performance. It was found

that novel tones at 1-2 Hz, acquired from the Pz electrode, provide the best single-

ensemble performance. Furthermore, the best intra-signal fusion performance again

came from the novel-Pz coefficients, combining frequency bands of (0-1 Hz) and (2-4

Hz). Similar performance values resulted in the inter-signal combination of the target-Pz

coefficients at (2-4 Hz) and the novel-Pz coefficients in the (1-2 Hz) frequency range. In
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many cases the addition of classifiers in a single ensemble did not increase the

generalization performance as expected. On the other hand, when the two ensembles

were combined with data fusion, the additional number of classifiers in each ensemble

did contribute to the increased performance of the entire system. The upward trend of

data fusion performance led to the addition of more classifiers ultimately increasing the

overall performance.

6.1 ACCOMPLISHMENTS

The objectives of this work included the analysis of ERP signals for the early diagnosis

of Alzheimer's disease. The approach demonstrated the feasibility of a non-invasive,

simple to perform and inexpensive procedure of an EEG recording as a diagnostic tool

for AD. The contributions that were presented in this work are outlined below:

1) A multi-resolution wavelet analysis on ERP signals in response to target and

novel tones from three EEG electrodes: Cz, Fz, Pz. Each combination of tone and

electrode was analyzed separately at five spectral bands to find which individual

feature set contained the most relevant information.

2) A decision level data fusion of ensembles was investigated with intra-signal

combinations to include novel information from multiple spectral bands.

Similarly, inter-signal combinations were considered to include additional

relevance from multiple signals.

3) Further analysis on the fused system resulted in an automated classification

algorithm capable of outperforming the overall accuracy of community healthcare

clinics in diagnosing AD.
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6.2 FUTURE WORK

The approach described in this work involves various combinations of ERP signals

measured at different electrode locations. The final algorithm resulted in a diagnostic

tool with a high specificity in distinguishing cognitively normal subjects from AD

patients. Future work should assess the performance of the algorithm in distinguishing

between AD and different types of non-AD patients, specifically patients with other

forms of dementia such as VaD or Parkinson's disease. Furthermore, a detailed analysis

of various ERP signals could result in specific components that provide relevant

information for distinguishing between other forms of dementia. Since the algorithm had

a high specificity of 82%, it could also aide the community healthcare clinician in their

diagnosis where the specificity is 53%.

The combination method described in this work, weighted each ensemble based

on its performance on the training data. Future work should include a weight adjustment

on each ensemble based on the diagnostic performances and the ensemble's decision. In

other words, if an ensemble, trained on a particular feature set, is known to perform well

in correctly classifying AD patients, its weight should be adjusted accordingly when the

ensemble's decision is AD. An analysis should also determine which patients are

misclassified by each feature set. This information would aide in the combination by

including feature sets that correctly classify instances that were originally misclassified.

Finally, a strategic contribution measure of all relevant components would provide the

optimal combination rule for practical use of this diagnostic tool.
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APPENDIX

There are two methods of data fusion for this application. The first method, referred to as

feature level fusion, involves the concatenation of features sets resulting from the wavelet

decomposition. This approach combines the coefficients of multiple frequency bands and

uses them as inputs into the neural network. The second method, called decision level

fusion, generates an ensemble of classifiers on each of the feature sets and combines the

decisions of the ensembles for the final classification. Figure A.1 and A.2 illustrate the

results of two experiments comparing the two methods of data fusion.
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Figure A.I - Performance comparison of decision and feature levelfusion with target-Pz
coefficients
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Figure A.2 - Performance comparison of decision and feature level fusion with novel-Pz
coefficients

In Figure A.1, the performance of the target-Pz coefficients at (1-2 Hz) combined with

(2-4 Hz) using feature level fusion does not out-perform the individual ensembles. On

the other hand, the decision level fusion performs better than each of the ensembles. The

performance results are similar in Figure A.2, where decision level fusion out-performs

each of the ensembles and also feature level fusion. In feature level fusion, the features

are concatenated creating a high dimensional problem. Decision level fusion, divides the

dimensionality into smaller classification problems, and combines the decisions of the

classifiers increasing the performance.
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