1,941 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Feature-based search space characterisation for data-driven adaptive operator selection

    Get PDF
    Combinatorial optimisation problems are known as unpredictable and challenging due to their nature and complexity. One way to reduce the unpredictability of such problems is to identify features and the characteristics that can be utilised to guide the search using domain-knowledge and act accordingly. Many problem solving algorithms use multiple complementary operators in patterns to handle such unpredictable cases. A well-characterised search space may help to evaluate the problem states better and select/apply a neighbourhood operator to generate more productive new problem states that allow for a smoother path to the final/optimum solutions. This applies to the algorithms that use multiple operators to solve problems. However, the remaining challenge is determining how to select an operator in an optimal way from the set of operators while taking the search space conditions into consideration. Recent research shows the success of adaptive operator selection to address this problem. However, efficiency and scalability issues still persist in this regard. In addition, selecting the most representative features remains crucial in addressing problem complexity and inducing commonality for transferring experience across domains. This paper investigates if a problem can be represented by a number of features identified by landscape analysis, and whether an adaptive operator selection scheme can be constructed using Machine Learning (ML) techniques to address the efficiency and scalability issues. The proposed method determines the optimal categorisation by analysing the predictivity of a set of features using the most well-known supervised ML techniques. The identified set of features is then used to construct an adaptive operator selection scheme. The findings of the experiments demonstrate that supervised ML algorithms are highly effective when building adaptable operator selectors

    Adaptive operator selection utilising generalised experience

    Full text link
    Optimisation problems, particularly combinatorial optimisation problems, are difficult to solve due to their complexity and hardness. Such problems have been successfully solved by evolutionary and swarm intelligence algorithms, especially in binary format. However, the approximation may suffer due to the the issues in balance between exploration and exploitation activities (EvE), which remain as the major challenge in this context. Although the complementary usage of multiple operators is becoming more popular for managing EvE with adaptive operator selection schemes, a bespoke adaptive selection system is still an important topic in research. Reinforcement Learning (RL) has recently been proposed as a way to customise and shape up a highly effective adaptive selection system. However, it is still challenging to handle the problem in terms of scalability. This paper proposes and assesses a RL-based novel approach to help develop a generalised framework for gaining, processing, and utilising the experiences for both the immediate and future use. The experimental results support the proposed approach with a certain level of success.Comment: Submitted to journal for publications, under revie
    corecore