518 research outputs found

    An improved neuroendocrine–proportional–integral–derivative controller with sigmoid-based secretion rate for nonlinear multi-input–multi-output crane systems

    Get PDF
    This paper proposes an improved neuroendocrine–proportional–integral–derivative controller for nonlinear multi-input–multi-output crane systems using a sigmoid-based secretion rate of the hormone regulation. The main advantage of the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative is that the hormone secretion rate of neuroendocrine–proportional–integral–derivative can be varied according to the change of error. As a result, it can provide high accuracy control performance, especially in nonlinear multi-input–multi-output crane systems. In particular, the hormone secretion rate is designed to adapt with the changes of error using a sigmoid function, thus contributing to enhanced control accuracy. The parameters of the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller are tuned using the safe experimentation dynamics algorithm. The performance of the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller-based safe experimentation dynamics algorithm is evaluated by tracking the error and the control input. In addition, the performances of proportional–integral–derivative and neuroendocrine–proportional–integral–derivative controllers are compared with the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative performance. From the simulation work, it is discovered that the sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative design provides better control performances in terms of the objective function, the total norm of error and the total norm of input compared to proportional–integral–derivative and neuroendocrine–proportional–integral–derivative controllers. In particular, it is shown the proposed sigmoid-based secretion rate neuroendocrine–proportional–integral–derivative controller contributes 5.12% of control accuracy improvement by changing the fixed hormone secretion rate into a variable hormone secretion rate based on the change of error

    Neuroendocrine-Based Cooperative Intelligent Control System for Multiobjective Integrated Control of a Parallel Manipulator

    Get PDF
    This paper presents a novel multiloop and Multi-objective cooperative intelligent control system (MMCICS) used to improve the performance of position, velocity and acceleration integrated control on a complex multichannel plant. Based on regulation mechanism of the neuroendocrine system (NES), a bioinspired motion control approach has been used in the MMCICS which includes four cooperative units. The planning unit outputs the desired signals. The selection unit chooses the real-time dominant control mode. The coordination unit uses the velocity Jacobian matrix to regulate the cooperative control signals. The execution unit achieves the ultimate task based on sub-channel controllers with the proposed hormone regulation self-adaptive Modules (HRSMs). Parameter tuning is given to facilitate the MMCICS implementation. The MMCICS is applied to an actual 2-DOF redundant parallel manipulator where the feasibility of the new control system is demonstrated. The MMCICS keeps its subchannels interacting harmoniously and systematically. Therefore, the plant has fast response, smooth velocity, accurate position, strong self-adaptability, and high stability. The HRSM improves the control performance of the local controllers and the global system as well, especially for manipulators running at high velocities and accelerations

    Autonomous Decision-Making based on Biological Adaptive Processes for Intelligent Social Robots

    Get PDF
    Mención Internacional en el título de doctorThe unceasing development of autonomous robots in many different scenarios drives a new revolution to improve our quality of life. Recent advances in human-robot interaction and machine learning extend robots to social scenarios, where these systems pretend to assist humans in diverse tasks. Thus, social robots are nowadays becoming real in many applications like education, healthcare, entertainment, or assistance. Complex environments demand that social robots present adaptive mechanisms to overcome different situations and successfully execute their tasks. Thus, considering the previous ideas, making autonomous and appropriate decisions is essential to exhibit reasonable behaviour and operate well in dynamic scenarios. Decision-making systems provide artificial agents with the capacity of making decisions about how to behave depending on input information from the environment. In the last decades, human decision-making has served researchers as an inspiration to endow robots with similar deliberation. Especially in social robotics, where people expect to interact with machines with human-like capabilities, biologically inspired decisionmaking systems have demonstrated great potential and interest. Thereby, it is expected that these systems will continue providing a solid biological background and improve the naturalness of the human-robot interaction, usability, and the acceptance of social robots in the following years. This thesis presents a decision-making system for social robots acting in healthcare, entertainment, and assistance with autonomous behaviour. The system’s goal is to provide robots with natural and fluid human-robot interaction during the realisation of their tasks. The decision-making system integrates into an already existing software architecture with different modules that manage human-robot interaction, perception, or expressiveness. Inside this architecture, the decision-making system decides which behaviour the robot has to execute after evaluating information received from different modules in the architecture. These modules provide structured data about planned activities, perceptions, and artificial biological processes that evolve with time that are the basis for natural behaviour. The natural behaviour of the robot comes from the evolution of biological variables that emulate biological processes occurring in humans. We also propose a Motivational model, a module that emulates biological processes in humans for generating an artificial physiological and psychological state that influences the robot’s decision-making. These processes emulate the natural biological rhythms of the human organism to produce biologically inspired decisions that improve the naturalness exhibited by the robot during human-robot interactions. The robot’s decisions also depend on what the robot perceives from the environment, planned events listed in the robot’s agenda, and the unique features of the user interacting with the robot. The robot’s decisions depend on many internal and external factors that influence how the robot behaves. Users are the most critical stimuli the robot perceives since they are the cornerstone of interaction. Social robots have to focus on assisting people in their daily tasks, considering that each person has different features and preferences. Thus, a robot devised for social interaction has to adapt its decisions to people that aim at interacting with it. The first step towards adapting to different users is identifying the user it interacts with. Then, it has to gather as much information as possible and personalise the interaction. The information about each user has to be actively updated if necessary since outdated information may lead the user to refuse the robot. Considering these facts, this work tackles the user adaptation in three different ways. • The robot incorporates user profiling methods to continuously gather information from the user using direct and indirect feedback methods. • The robot has a Preference Learning System that predicts and adjusts the user’s preferences to the robot’s activities during the interaction. • An Action-based Learning System grounded on Reinforcement Learning is introduced as the origin of motivated behaviour. The functionalities mentioned above define the inputs received by the decisionmaking system for adapting its behaviour. Our decision-making system has been designed for being integrated into different robotic platforms due to its flexibility and modularity. Finally, we carried out several experiments to evaluate the architecture’s functionalities during real human-robot interaction scenarios. In these experiments, we assessed: • How to endow social robots with adaptive affective mechanisms to overcome interaction limitations. • Active user profiling using face recognition and human-robot interaction. • A Preference Learning System we designed to predict and adapt the user preferences towards the robot’s entertainment activities for adapting the interaction. • A Behaviour-based Reinforcement Learning System that allows the robot to learn the effects of its actions to behave appropriately in each situation. • The biologically inspired robot behaviour using emulated biological processes and how the robot creates social bonds with each user. • The robot’s expressiveness in affect (emotion and mood) and autonomic functions such as heart rate or blinking frequency.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Richard J. Duro Fernández.- Secretaria: Concepción Alicia Monje Micharet.- Vocal: Silvia Ross

    Neuromodulatory Supervised Learning

    Get PDF

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Glucocorticoids—All-Rounders Tackling the Versatile Players of the Immune System

    Get PDF
    Glucocorticoids regulate fundamental processes of the human body and control cellular functions such as cell metabolism, growth, differentiation, and apoptosis. Moreover, endogenous glucocorticoids link the endocrine and immune system and ensure the correct function of inflammatory events during tissue repair, regeneration, and pathogen elimination via genomic and rapid non-genomic pathways. Due to their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune cells, tissues and organs, glucocorticoids significantly improve the quality of life of many patients suffering from diseases caused by a dysregulated immune system. Despite the multitude and seriousness of glucocorticoid-related adverse events including diabetes mellitus, osteoporosis and infections, these agents remain indispensable, representing the most powerful, and cost-effective drugs in the treatment of a wide range of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective tissue diseases, as well as many other pathological conditions of the immune system. Depending on the therapeutically affected cell type, glucocorticoid actions strongly vary among different diseases. While immune responses always represent complex reactions involving different cells and cellular processes, specific immune cell populations with key responsibilities driving the pathological mechanisms can be identified for certain autoimmune diseases. In this review, we will focus on the mechanisms of action of glucocorticoids on various leukocyte populations, exemplarily portraying different autoimmune diseases as heterogeneous targets of glucocorticoid actions: (i) Abnormalities in the innate immune response play a crucial role in the initiation and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper (Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly triggered by several different cytokines released by activated Th2 lymphocytes. Using these examples, we aim to illustrate the versatile modulating effects of glucocorticoids on the immune system. In contrast, in the treatment of lymphoproliferative disorders the pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending on the type of cancer. Therefore, we will also give a brief insight into the current knowledge of the mode of glucocorticoid action in oncological treatment focusing on leukemia

    Pemahaman pelajar tingkatan lima katering terhadap bab kaedah memasak dalam mata pelajaran teknologi katering

    Get PDF
    Bab Kaedah Memasak merupakan salah satu bab yang penting dalam mata pelajaran Teknologi Katering. Faktor terpenting adalah memastikan pelajar menguasai serta memahami konsepnya adalah melalui proses pengajaran dan pembelajaran yang betul. Tinjauan awal di Sekolah Menengah Teknik yang menawarkan Kursus Katering, menunjukkan bahawa kebanyakan pelajar sukar untuk menguasai dan memahami bab tersebut. Berdasarkan hasil tinjauan , pengkaji ingin mengenalpasti pemasalahan dalam memahami bab tersebut. Di samping itu juga, pengkaji ingin mengenalpasti adakah pencapaian pelajar dalam PMR, minat, motivasi dan gaya pembelajaran mempengaruhi pemahaman pelajar, Kajian rintis telah dilakukan terhadap 10 orang responden dengan nilai alpha 0.91. Ini menunjukkan kebolehpercayaan terhadap kajian di jalankan adalah tinggi. Responden adalah terdiri daripada 30 orang pelajar Tingkatan Lima (ERT) Sekolah Menengah Teknik Muar, Johor. Keputusan skor min keseluruhan menunjukkan pelajar berminat dan mempunyai motivasi ynag baik dalam bidang ini. Namun begitu, gaya pembelajaran yang diamalkan tidak sesuai dan antara pemyebab wujudnya pemasalahan dalam memahami bab Kaedah Memasak. Ujian kolerasi menunjukkan bahawa tidak terdapat sebarang hubungan signifikan antara pencapaian PMR pelajar dengan pemahaman bab tersebut. Sementara minat, motivasi dan gaya pembelajaran membuktikan ada hubungan signifikan dengan pemahaman pelajar dalam bab Kaedah Memasak

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 369)

    Get PDF
    This bibliography lists 209 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Direct Brain Cooling in Treating Severe Traumatic Head Injury

    Get PDF
    There are scientific evidences that hypothermia provides a strong neuroprotective effect on the brain following traumatic insults. In this chapter, we describe the pathophysiology of severe head injury with emphasis on benefits of hypothermia. To support these hypothetical or theoretical benefits, we describe our previous study with very encouraging findings done on severe head injuries, treated with direct focal brain cooling, and monitored with intracranial pressure, cerebral perfusion pressure, brain oxygenation, and brain temperature. This chapter ends with our current and still ongoing study in which one of its main objectives is to innovate a direct focal brain cooling machine. This chapter briefly explains the technical part of this cooling machine
    corecore