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Glucocorticoids regulate fundamental processes of the human body and control

cellular functions such as cell metabolism, growth, differentiation, and apoptosis.

Moreover, endogenous glucocorticoids link the endocrine and immune system and

ensure the correct function of inflammatory events during tissue repair, regeneration,

and pathogen elimination via genomic and rapid non-genomic pathways. Due to

their strong immunosuppressive, anti-inflammatory and anti-allergic effects on immune

cells, tissues and organs, glucocorticoids significantly improve the quality of life of

many patients suffering from diseases caused by a dysregulated immune system.

Despite the multitude and seriousness of glucocorticoid-related adverse events including

diabetes mellitus, osteoporosis and infections, these agents remain indispensable,

representing the most powerful, and cost-effective drugs in the treatment of a wide range

of rheumatic diseases. These include rheumatoid arthritis, vasculitis, and connective

tissue diseases, as well as many other pathological conditions of the immune system.

Depending on the therapeutically affected cell type, glucocorticoid actions strongly

vary among different diseases. While immune responses always represent complex

reactions involving different cells and cellular processes, specific immune cell populations

with key responsibilities driving the pathological mechanisms can be identified for

certain autoimmune diseases. In this review, we will focus on the mechanisms of

action of glucocorticoids on various leukocyte populations, exemplarily portraying

different autoimmune diseases as heterogeneous targets of glucocorticoid actions:

(i) Abnormalities in the innate immune response play a crucial role in the initiation

and perpetuation of giant cell arteritis (GCA). (ii) Specific types of CD4+ T helper

(Th) lymphocytes, namely Th1 and Th17 cells, represent important players in the

establishment and course of rheumatoid arthritis (RA), whereas (iii) B cells have emerged

as central players in systemic lupus erythematosus (SLE). (iv) Allergic reactions are mainly

triggered by several different cytokines released by activated Th2 lymphocytes. Using

these examples, we aim to illustrate the versatile modulating effects of glucocorticoids

on the immune system. In contrast, in the treatment of lymphoproliferative disorders the

pro-apoptotic action of glucocorticoids prevails, but their mechanisms differ depending

on the type of cancer. Therefore, wewill also give a brief insight into the current knowledge

of the mode of glucocorticoid action in oncological treatment focusing on leukemia.

Keywords: glucocorticoids, immune system, inflammation, giant cell arteritis, rheumatoid arthritis, systemic lupus

erythematosus, allergic diseases, leukemia
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INTRODUCTION

Hormones enable intercellular communication as well as the
exchange of information between different organ systems
throughout the human body. They are involved in a variety of
processes such as growth, development, and metabolism. The
synthesis and secretion of hormones is subject to stringent
regulations, comprising positive, and negative feedback loops
as crucial mechanisms. Steroids are lipophilic hormones that
are subdivided into mineralocorticoids produced in the zona
glomerulosa of the adrenal cortex, glucocorticoids produced
in the zona fasciculata as well as sex hormones produced
in the zona reticularis and to a great extent in the gonads.
Since it has been demonstrated that natural glucocorticoids also
have some mineralocorticoid effects, the classification into these
groups is not completely accurate. The term “glucocorticoids” is
more suitable when talking about synthetic glucocorticoids (e.g.,
prednisolone or dexamethasone), because these drugs are more
restricted to glucocorticoid effects only (1).

The initial step of steroid hormone biosynthesis is the
conversion of cholesterol to the precursor pregnenolone in the
mitochondria. Steroid hormone biosynthesis is mainly realized
by enzymes of the cytochrome P450 family (2). Sex hormones
affect growth, development and reproductive cycles whereas
mineralocorticoids regulate sodium and water balance and
glucocorticoids influence energy and metabolic processes as well
as immune and stress responses.

Between 5 and 30mg of the active endogenous (physiological)
glucocorticoid cortisol is produced per day, regulated by the
hypothalamic–pituitary–adrenal (HPA) axis. Glucocorticoids
bind to glucocorticoid receptors that are present in cells
throughout the body, including cells in the hypothalamus and
pituitary gland, which are part of the negative feedback loop
controlling the glucocorticoid production. Furthermore, the
hormone concentration varies in a circadian manner peaking
at 9 a.m. in the morning and reaching the lowest plasma
concentration at midnight.

The dehydrogenation of cortisol to its inactive form
cortisone is promoted by the enzyme 11β-hydroxysteroid
dehydrogenase (11β-HSD) type 1 in the liver. The same
enzyme also exhibits reductase activity promoting the reverse
reaction. The type 2 11β-HSD is only able to convert the
active into the inactive form due to its sole dehydrogenase
activity. Depending on the balance and activity of both
enzymes, the intracellular glucocorticoid concentration and
thus the tissue sensitivity for glucocorticoids varies (3). In
addition to that, glucocorticoids have been demonstrated
to possess immunomodulating effects which depend
on concentration and time of administration: While an
immunostimulatory effect is observed at lower concentrations
(below serum level), higher concentrations (therapeutic range)
lead to an immunosuppression (4). Due to their strong
immunosuppressive, anti-inflammatory and anti-allergic effects,
synthetic glucocorticoids have been established as important
drugs in the treatment of diseases driven by immune and
inflammatory dysregulation.

Glucocorticoid Signaling
Glucocorticoids are lipophilic substances with a low molecular
weight that can easily pass cellular membranes and bind
to the glucocorticoid receptor in the cytosol. The cytosolic
glucocorticoid receptor is ubiquitously expressed by nucleated
cells and resides in the cytoplasm as a multi-protein complex.
Proteins and co-factors stabilize the receptor and support a
specific conformation leading to a high binding affinity for its
ligands (5–9). Two main receptor isoforms are described, the
α glucocorticoid receptor, which is activated by glucocorticoids,
and the β isoform with a deformed ligand-binding domain
that cannot bind ligands (10–13). Further receptor isoforms
which differ in their transcriptional activity as a result of
alternative splicing and/or post-translational modifications, have
been extensively described elsewhere (12–14).

The hormone-receptor complex is translocated into the
nucleus as a homodimer and binds to palindromic DNA-
binding sites in the promoter region of different target genes,
so called glucocorticoid response elements. This genomic
mechanism of glucocorticoid action is known as transactivation,
which describes the binding to positive glucocorticoid response
elements leading to the activation of the transcription of
anti-inflammatory but also regulatory proteins. These include
for example IL-10, Annexin 1, and IκB as well as enzymes
of gluconeogenesis such as tyrosine aminotransferase, serine
dehydrogenase, or phosphoenol pyruvate carboxykinase. In
contrast, the term transrepression refers to an impairment of the
expression of immunoregulatory and proinflammatory proteins
caused by (i) competition for nuclear co-activators between
the hormone-receptor-complex and transcription factors; (ii)
direct or indirect interaction with transcription factors like
NF-κB and AP-1. Similarly, glucocorticoids diminish gene
expression by a mechanism referred to as cis-repression,
which involves binding to negative glucocorticoid response
elements. Genomic mechanisms of glucocorticoid action result
in “delayed effects,” meaning that the protein level does not
change directly after glucocorticoid administration. The duration
of the delay depends on different factors, including transport
within the bloodstream, onset of activation/translocation of
the hormone-receptor complex and the transcriptional and
translational processes themselves. Nevertheless, the description
of rapid improvements which are observed within a few
minutes—especially after intravenous or intraarticular injection
of high glucocorticoid doses—demonstrates the existence of non-
genomic effects. These are triggered by (i) proteins released from
the multi-protein complex after the binding of glucocorticoids
to the cytosolic receptor, (ii) interactions with membrane-
bound receptors, and (iii) nonspecific effects resulting from the
interaction of glucocorticoids with cellular membranes (15, 16).

More pronounced glucocorticoid effects are observed with
increasing glucocorticoid dosages, as receptor saturation is
achieved (17). Unfortunately, rising dosages and duration of
administration simultaneously increase the risk of adverse
events. While the long-term use of dosages ≤5mg prednisone
equivalent per day is generally associated with a low risk of
adverse effects, the application of dosages >10 mg/day increases

Frontiers in Immunology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 1744

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Strehl et al. Mechanisms of Glucocorticoids

the frequency of the latter (18). These adverse effects are
thought to depend on the mechanism of glucocorticoid action:
Repression of cytokines such as IL-1, IL-2, IL-6, TNF-α, IFN-
γ, and prostaglandins mediates the positive anti-inflammatory
effects, while transactivation is thought to be responsible for the
majority of adverse effects (19–21). However, this classification
is not absolute. In contrast, it has been demonstrated that
transactivation also contributes to the anti-inflammatory effects,
e.g., by the upregulation of genes like GILZ and DUSP1.
In addition, in a mouse model the prevention of receptor
dimerization and thereby inhibition of DNA-binding impaired
the anti-inflammatory capacity of glucocorticoid action (22–26).

Glucocorticoids and Inflammation
These findings clearly show that our knowledge concerning
the mechanisms of glucocorticoid action—including the
desirable anti-inflammatory and the undesirable adverse
effects—is yet insufficient. Nevertheless, these drugs still
represent an indispensable component of the treatment of most
inflammatory diseases because of their efficient and cost-effective
characteristics. However, the considerable toll taken by adverse
events must not be neglected and the development of an
equally effective alternative with a more favorable side-effect
profile would be most desirable. The extent and importance of
glucocorticoid toxicity has been reviewed elsewhere (27, 28) and
will not be discussed in detail in this article.

The immune system consists of two major components: The
innate immune response represents our first line of defense
and includes physical and chemical barriers such as the skin

and tears. In addition, non-specialized cells recognize foreign
invaders by components like bacterial lipopolysaccharide and
destroy them by phagocytosis or release of toxic substances.
The adaptive immune response—our second line of defense—
includes B and T lymphocytes. While the former are responsible
for antibody production, the latter can differentiate into distinct
subpopulations that participate in B cell maturation or possess
cytotoxic potential (29–31). The two lines of defense are
linked by cytokines and cell-cell interaction, which is crucial
for the initiation of the adaptive response. The most notable
attribute of the adaptive immune response is memory, enabling
an immediate and very specific pathogen defense following
previous exposure. The protective actions of the immune
system are accompanied by pain, swelling, itching, redness
and heat, typical signs of an inflammation. At the same time,
these symptoms represent a significant burden in autoimmune
diseases. Normally, the immune response is strictly regulated
to discriminate self from non-self—a mechanism known as
tolerance (29, 30). It is realized by positive and negative selection
of lymphocytes in the bone marrow or thymus. In more detail
(for T cells), T cells that cannot bind MHC class 1 or class 2
complexes undergo apoptosis due to the lack of survival signals.
The subsequent negative selection determines if T cells bind
self-peptides presented by epithelial cells of the thymus. Naive
T cells that have passed both, the positive and the negative
selection are qualified tomigrate into secondary lymphoid organs
(29). Autoimmune diseases originate from a dysregulation of the
immune response, while the particular cause of the disease is
often unknown. Some factors, including genetic predisposition,

FIGURE 1 | Effects of glucocorticoids on immune and other cells. Glucocorticoids affect the number and function of immune cells (cells and compartments adapted

from Servier Medical Art, 2007; Les Laboratoires Servier, München, Germany).
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sex, and environment have been identified to promote the
establishment of autoimmune diseases. Due to their strong
anti-inflammatory and immunosuppressive effects on almost
all immune cells (summarized in Figure 1), glucocorticoids
are indispensable in the treatment of autoimmune diseases. In
general, glucocorticoids inhibit leukocyte traffic and thereby the
access of leukocytes to the site of inflammation. Furthermore,
glucocorticoids interfere with immune cell function and suppress
the production and actions of humoral factors involved in the
inflammatory process.

Since the establishment and the course of autoimmune
diseases are driven by different cell populations, glucocorticoid
application targets diverse leukocyte populations and thus the
mechanism of glucocorticoid action varies. Recently, Franco et al.
have investigated the transcriptional effects of glucocorticoids
on nine primary human cell types. They found 9,457 genes
to be differentially expressed in response to glucocorticoids,
whereas only 25 of them (0.3%) involved all cell types examined,
demonstrating that the transcriptional response of each cell type
is quite distinct (32).

The next chapters will illustrate the versatile modulating
effects of glucocorticoids on the immune system on the
basis of exemplary diseases involving the respective leukocyte
population. Glucocorticoid regimens used in daily practice
according to current guidelines are presented in Table 1 for the
selected diseases.

ABNORMALITIES IN INNATE IMMUNE
RESPONSE PLAY A CRUCIAL ROLE IN
THE INITIATION AND THE PERPETUATION
OF GIANT CELL ARTERITIS

Giant cell arteritis (GCA) is defined as a granulomatous large-
vessel vasculitis, which primarily involves medium- and large-
caliber branches of the aorta (34, 58, 59). Both the innate and the
adaptive immune responses are involved in the pathogenesis of
this disease which can be divided into different phases (59). The
initiation of inflammation is followed by its amplification and the
constitution of feed forward loops leading to arterial remodeling
and ultimately vascular damage. Recently, the current knowledge
on the pathophysiology of GCA has been discussed in detail in
two reviews (59, 60). Al-Mousawi et al. describe this disease as
being mainly mediated by T cells (60). The first step, however,
is the abnormal maturation of vascular dendritic cells (DC)
in the adventitia of the affected vessels. An unknown trigger,
perhaps microorganisms or viral agents, drives this initial step
(59). Predisposing factors include a certain genetic background,
female sex, and alterations of the immune and arterial systems
related to aging (59). The activatedDC recruit and activate CD4+
naïve T cells in the arterial wall where they polarize into T helper
(Th) 1 cells, Th17 and regulatory T (Treg) cells (59, 60). The
secreted products of these cells, namely and most importantly
interferon-γ, interleukin (IL)-2, and IL-17, facilitate both the
recruitment and activation of neutrophils, macrophages and
vascular smooth muscle cells, and the formation and activation
of multinucleated giant cells (Figure 2). These giant cells are

also capable of secreting cytokines and growth factors. Of note,
Th17 cells also secrete other cytokines such as IL-21, IL-22, IL-
8, and IL-26. Macrophages produce IL-6 and IL-1β within the
adventitia. The latter cytokines are thought to mainly drive the
systemic manifestations of GCA such as fatigue, fever, and weight
loss. The fact that the levels of these cytokines largely determine
glucocorticoid requirements underlines the importance of the
innate immune response in the pathogenesis of GCA (61).
Macrophages also produce matrix metalloproteinases (MMP)
such as MMP-9, a type IV collagenase. Watanabe et al. have very
recently identified this enzyme in vasculitic lesions of GCA and
have shown MMP-9 to control the access of monocytes and T
cells to the vascular wall. MMP-9–producing monocytes facilitate
migration of T cells through the collagen IV-containing basement
membrane. The enzymatic activity of MMP-9 is required for
invasion of vasculitogenic T cells and monocytes, formation
of neoangiogenic networks, and neointimal growth (62). As a
consequence, the elastic lamina and growth factors are destroyed,
which propagates intimal hyperplasia. Of note, macrophages also
produce reactive oxygen species which contribute to the damage
of smooth muscle cells in the media (60). Ultimately, the injured
arterial cells respond to the damaging immunological events
mentioned above by initiating dysfunctional repair processes.
This vascular remodeling leads to inflammatory wall thickening,
decreased luminal diameter, and ischemicmanifestations of GCA
with potential organ damage (34).

Glucocorticoids represent a most effective therapy and,
therefore, remain—despite the recently shown favorable effects
of the IL-6 receptor inhibitor Tocilizumab (63)—the primary
treatment in GCA (34). These drugs have been the mainstay
of treatment since the 1950s. Their genomic and non-genomic
effects contribute to the successful treatment of this disease.
We have recently summarized details regarding glucocorticoids
in the management of polymyalgia rheumatica and GCA (64).
In brief, glucocorticoids induce important anti-inflammatory
and immunosuppressive effects on both primary and secondary
immune cells involved in the pathophysiology as described
above. Glucocorticoids inhibit some of their crucial functions
with key mechanisms being the suppression of the production of
pro-inflammatory cytokines, and the prevention and inhibition
of activation of T cells and monocytes/macrophages.

Innate immune cells that are predominantly responsible
for the features of systemic inflammation present in GCA
are most susceptible to glucocorticoid treatment (65, 66). By
inhibiting the NFκB pathway by direct or indirect interaction
with this transcription factor as described in the introduction,
glucocorticoids efficiently suppress the production of central
cytokines (Figure 2) (67). In this context, Linden and Brattsand
demonstrated that GM-CSF showed the highest susceptibility
to glucocorticoid treatment compared to IL-1β and IL-6
(68). These findings conform to the beneficial effects of IL-6
blockade in GCA therapy (63). Of note, higher glucocorticoid
sensitivity has been attributed to monocytes compared to
more differentiated macrophages (68). Consequently, it can
be inferred that glucocorticoids are most potent in inhibiting
freshly attracted monocytes in states of acute inflammation. In
addition, glucocorticoids affect the recruitment of cells of the
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TABLE 1 | Glucocorticoid regimens in selected diseases.

Disease Induction Tapering Maintenance Relapse

INFLAMMATORY RHEUMATIC DISEASES

Giant cell arteritis - Immediate treatment with

40–60 mg/day* for induction of

remission in active GCA** (33)

- Tapering is recommended

when the disease is under

control to achieve a target

dose of 15–20 mg/day* within

2 to 3 months

- After 1 year target dose should

be ≤5 mg/day* (33)

- If long-term therapy is required

a dose of 5 mg/day* or less

should be used

- GC therapy should ideally be

tapered to zero as early as

clinically feasibly (18)

- Increase to pre-relapse dose or by

up to 5–10 mg/day*

- Taper within 4–8 weeks to

pre-relapse dose

- Repeat induction therapy for

ischemic complications (34)

Rheumatoid arthritis - When initiating/changing

csDMARDs short-term GC

therapy should be considered

(35)

- GC tapering should start as

soon as clinically feasible (35)

- If long-term therapy is required

a dose of 5 mg/day* or less

should be used

- GC therapy should ideally be

tapered to zero as early as

clinically feasibly (18)

- Usually doses between 10 and 20

mg/day* are sufficient to treat

flares in this disease

Systemic lupus

erythematosus

- Therapy depends on disease

manifestations and

severity (36)

- In acute, organ-threatening

disease high-dose intravenous

pulse therapy (usually

250–1,000 mg/day* for 3 days)

is often used (36)

- GC should be tapered or at

least minimized as rapidly as

clinically feasible

- Long-term aim is to minimize

daily dose to ≤7.5 mg/day* or

to discontinue GC therapy (36)

- The characteristic of flare therapy

depends on disease, as has been

similarly stated for the induction

therapy

ATOPY

Atopic dermatitis - Stepwise approach: adjust treatment based on disease severity assessed by SCORAD (37)

→ Mild disease: class II topical glucocorticoids (e.g., flumethasone 0.02%) (38)

→ Moderate disease: class II/III topical glucocorticoids (e.g., mometasone 0.1%) (39)

→ Severe disease: short-term oral glucocorticoids may be considered in adults (38)

Allergic rhinitis - Moderate to severe rhinitis: nasal glucocorticoids, e.g., fluticasone, mometasone, beclametasone (40, 41)

- Oral glucocorticoids should only be used in severe persisting disease (40, 41)

- stepped-care approach according to disease severity (42)

Asthma - Most patients initially receive

low dose ICS (e.g., 200–400

µg/d budesonide) (43)

- Frequent troublesome

symptoms justify medium

(400–800 µg/d) to high dose

ICS (>800 µg/d) (44)

- Low dose oral corticosteroids

(≤7.5 mg/day *) should only be

considered in adults with

severe asthma or poor

symptom control (45)

- ICS should not be stopped

completely, cessation is

associated with a higher risk of

exacerbations (46)

- In stable disease ICS doses

can be reduced by 25–50%

every 3 months (47)

- ICS are recommended as

controller treatment in all

asthma patients either

as-needed or daily depending

on disease severity (43)

- Dose adjustment according to

a stepwise approach***

ranging from 200–400 to >800

µg/d budesonide or

comparable doses of other

formulations in adults, reduced

doses are used in the

treatment of children <12

years (48)

- Worsening symptoms: adjustment

of the treatment (increase

reliever/controller use, step

up to higher dose) according to a

written asthma action plan***

- Severe exacerbation: → adults:

40–50 mg/d prednisolone →

Children: 1–2 mg/kg/d, max. 40

mg/d prednisolone to be

continued for 5–7 days (49, 50)

Anaphylactic shock - Glucocorticoids are used to prevent protracted anaphylactic symptoms, while their efficacy in the acute phase is limited

due to slow onset of action (51, 52)

- 250–1,000mg i.v. prednisolone (weight-adjusted dosing in children) (53)

LEUKEMIA

Chronic lymphoblastic

leukemia****

- Patients with diagnosed limited-stage Hodgkin’s lymphoma (HL) and a positive interim positron-emission tomography

after two cycles of ABVD (adriamycin, bleomycin, vinblastine, and dacarbazine) should be treated with two cycles of

bleomycin/etoposide/doxorubicin/cyclophosphamide/vincristine/procarbazine/prednisone in escalated dose before ISRT

- Patients with refractory or relapsed HL dexamethasone can be given in combination with high-dose cytarabine/cisplatin

(DHAP) before high-dose chemotherapy followed by autologous stem cell therapy

- Patients diagnosed for nodular lymphocyte predominant Hodgkin lymphoma benefit from the combination of

rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone (R-CHOP)

- CLL patients with transformation into a diffuse large B-cell lymphoma benefit from therapies used in DLBCL such as

rituximab plus CHOP (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) (54–56)

(Continued)
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TABLE 1 | Continued

Disease Induction Tapering Maintenance Relapse

Chronic myeloid leukemia N/A

Acute myeloid leukemia N/A

Acute lymphoblastic

leukemia

- Glucocorticoids are given as a so-called pre-phase therapy (usually prednisone 20–60 mg/day or dexamethasone 6–16

mg/day, both i.v. or p.o.) alone, or in combination with another drug (e.g., vincristine, cyclophosphamide), but often given

together with allopurinol and hydration for ∼5–7 days. The response to pre-phase therapy defines the chemosensitivity of

the disease, and is included in some studies for risk assessment, since good responders to prednisone may have a better

outcome.

- Regimens of induction therapy are centered on vincristine, glucocorticoids, and anthracycline (daunorubicin, doxorubicin,

rubidazone, idarubicin), with or without cyclophosphamide or cytarabine. Dexamethasone is often preferred to

prednisone, since it penetrates the blood–brain barrier and also acts on resting leukemic blast cells (LBCs).

- In adult ALL glucocorticoids are often used in the hyper-CVAD (cyclophosphamide, vincristine, doxorubicin,

dexamethasone) protocol, preferentially used in the United States, but also in other parts of the world

- Maintenance therapy usually consists of daily 6-mercaptopurine and weekly methotrexate. In some treatment regimens,

repeated cycles of vincristine, dexamethasone or other drugs in monthly or longer intervals are given (57)

*Doses are given as prednisone-equivalent. ** In patients with GCA suffering from acute visual loss or amaurosis fugax, the use of very high GC dosages, namely 0.25–1 g i.v.

methylprednisolone daily for up to 3 days should be considered. ***Details are provided by the Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention,

2019. Available from: www.ginasthma.org N/A: glucocorticoids are not used as standard therapy in these diseases. ****The transformation into a diffuse large B-cell lymphoma (DLBCL)

or Hodgkin’s lymphoma occurs in 2%−15% of CLL patients during the course of their disease.

FIGURE 2 | Key players of the immune system driving the pathogenesis of immune-mediated diseases. GCA, giant cell arteritis; DC, dendritic cell; pDC, plasmacytoid

dendritic cell; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus (cells adapted from Servier Medical Art, 2007; Les Laboratoires Servier, München,

Germany).

mononuclear phagocytic system by suppressing the expression of
adhesion molecules on the surface of the endothelium (69). With
respect to monocyte function, Blotta et al. demonstrated that the
incubation of monocytes with dexamethasone led to a decreased
IL-12 production in vitro (Figure 3) (70). In line with this, they
presented a limited capacity to induce Th1 differentiation.

Deng et al., however, have shown that glucocorticoids suppress
the production of Th17-promoting cytokines (IL-1β, IL-6, and

IL-23) (Figure 3), but IFN-γ-producing Th1 responses persist
in treated patients (71). Also, patients presenting prominent
expression of IL-17A in temporal artery biopsies demonstrated
favorable responses to glucocorticoid treatment (72). Therefore,
it was assumed that the IL-6-IL-17 cluster is highly responsive
to glucocorticoid therapy, whereas the IL-12-IFN-γ cluster is
resistant to glucocorticoid-mediated immunosuppression (73).
Nevertheless, there are reports of a reduction in Th1 response
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FIGURE 3 | Glucocorticoids modifying the Th balance Glucocorticoids affect the predominance of different T helper (Th) cell subsets, e.g., by influencing cytokine

production. MC, monocyte (cells adapted from Servier Medical Art, 2007; Les Laboratoires Servier, München, Germany).

after glucocorticoid treatment in patients with Takayasu’s
arteritis—a condition closely linked to GCA (74). Moreover,
further studies revealed a decrease in both Th1 and Th17 cells,
and a reduction of IFN-γ in GCA patients after glucocorticoid
treatment (75, 76). Reviewing the pathogenesis of GCA, Samson
et al. thus concluded that the conflicting results regarding
glucocorticoid response result from prevalent plasticity between
Th1 and Th17 cells influenced by the surrounding cytokine
milieu (77).

At higher glucocorticoid dosages, for instance in form of
pulse therapy in complicated GCA and in case of established
visual loss, rapid non-genomic effects as already described in the
introduction contribute to their therapeutic efficacy [reviewed
in (64)].

AUTOIMMUNE DISEASES DRIVEN BY
IRREGULARITIES IN THE ADAPTIVE
IMMUNE SYSTEM

Th1 and Th17 Cells Represent Important
Players in the Establishment and Course of
Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disease
that affects up to 1% of the population worldwide with a higher
prevalence in women than in men. RA patients suffer from

pain, immobility, and fatigue leading to decreased quality of
life (78). The pathogenesis of RA is characterized by chronic
inflammation mainly localized in the synovial joints leading
to the destruction of articular cartilage and the establishment
of bone erosions. Joint inflammation is accompanied by the
infiltration of the synovium with immune cells such as T cells,
B cells, macrophages, and dendritic cells and the proliferation of
fibroblast-like synoviocytes of the synovial sub-lining layer which
finally contribute to the joint destruction (79).

Glucocorticoids play a very important role in the treatment
of RA, rapidly suppressing inflammatory activity especially
at disease onset and during flares (15, 16, 80–82). Although
glucocorticoids satisfactorily suppress inflammation and reduce
symptoms such as pain and morning stiffness, data regarding
their ability to manage cartilage degradation and bone erosions
remain controversial (83, 84). Only limited success with regard
to remission rates using glucocorticoids has been reported, e.g.,
in early treatment of undifferentiated arthritis (85) but also
the SAVE trial (remission-rate: 17%) (86) and the STIVEA
trial (remission-rate: 20%) (87). However, glucocorticoids still
efficiently limit inflammation. Although the exact mechanism of
RA pathogenesis remains unclear, it has become evident that Th
cell subsets play an important role in the course of the disease.
CD4+ T cells, especially Th1 and Th17 cells, play a major role in
RA (88). RA patients present an enrichment of effector memory
CD4+CD45RO+ T cells in the affected joints (89) and a massive
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expansion CD4+ T cell clones in synovial tissue of early disease,
which suggests a local antigen-induced proliferation (90). In this
context, it should be noted that blocking co-stimulation targeting
CD80/CD86-CD28 interaction significantly improved the signs
and symptoms of RA illustrating the importance of T cells in the
pathogenesis (91). Moreover, genetic association of certain HLA-
DRB1 alleles with increased susceptibility to RA further supports
the central role of Th cells in RA (92).

When the Th1/Th2 paradigm dominated the understanding
of the pathogenesis of autoimmune diseases, RA was defined
as a Th1-driven disease because CD4+ T cells identified to
be enriched in synovial fluids from RA patients were prone
to secrete IFN-γ but not IL-4 (93, 94). These findings were
further supported by the enrichment of the IFN-γ-induced
chemokines CXCL9 and CXCL10 and the chemokine receptor
CXCR3 binding both of the latter in RA synovium (95–98). Th1
cells classically activate macrophages and increase their capacity
to produce pro-inflammatory cytokines present in RA synovium
such as TNF (Figure 2) (99). Moreover, IL-12, IL-18, and IFN-γ,
the drivers of Th1 differentiation have been also identified in
synovial tissues of RA patients (100, 101), although the levels of
Th1-mediated IFN-γ were relatively low compared with those of
TNF-α, IL-1, or IL-6 derived from synovial fibroblasts (102, 103).

The discovery of Th17 cells (100, 101) and the delineation
of the IL-17 family members (104) as well as the shift from
Th17 cells to Th1 cells (i.e., “non-classic Th1 cells”) being
more pathogenic than Th17 cells per se shed new light on
the contribution of inflammatory Th subsets to the initiation
of RA (Figure 2) (105–108). Th17 cells are highly unstable
and easily shift to Th1 cells but can also transdifferentiate
back as demonstrated for Th1 cells in the gut (109–112).
At the onset and in the early phase of the pathogenesis
of RA, Th17 cells shift to Th1 cells, whereas methotrexate
(MTX) reduced the ratio of Th17 cells but not Th1 cells
(113). Finally, these finding demonstrate that Th17 and ex-
Th17 or “non-classic Th1 cells” cells play important roles
in the early phase of RA and for the treatment using a
combination of MTX and glucocorticoids according to the
EULAR recommendations for the management of rheumatoid
arthritis (35). While MTX reduces the ratio of Th17 cells,
which are—depending on the immunopathological setting—
resistant to glucocorticoid mediated suppression in terms of
survival and the production of IL-17A and IL-17F but not IL-
22 (114), glucocorticoids induce Th1 cell apoptosis via induction
of BIM (114, 115). Moreover, glucocorticoids decrease IFN-γ
production by T cells from patients with rheumatoid arthritis
ex vivo and in vitro mechanistically via their suppressive action
on the IL-12-induced STAT4 phosphorylation and by direct
protein-protein interactionwith the transcription factor T-BET—
described as transrepression in the introduction (Figure 3) (116–
119). Inhibition of Th1 activity by glucocorticoids may reduce
overall inflammation in RA patients while the glucocorticoid
resistant joint destruction can be assumed to be Th17 mediated.
Mechanistically, glucocorticoid resistant joint destruction may
be maintained by the glucocorticoid-mediated promotion of
intrinsic Th17 differentiation (120), and the induction of bone
resorption via synovial IL-17 (121). IL-17 also contributes to

neutrophil recruitment (122) and an increase in neutrophil
survival, a hallmark of RA synovial fluid promoting joint damage
(Figure 2) (122–124).

B Cells Have Emerged as Central Players
in Systemic Lupus Erythematosus
Components of the innate and the adaptive immune system
play an important role in the pathogenesis of systemic
lupus erythematosus (SLE). Clinical manifestations of this
autoimmune disease are diverse, affecting a wide spectrum
of organs and tissues. The pathogenesis of the disease is
not yet fully understood, but beside environmental factors
a genetic susceptibility to SLE has been described including
a variety of nucleotide polymorphisms [reviewed elsewhere
(125)]. Plasmacytoid dendritic cells (pDC) produce type I
interferon in response to viral infections. A large number of
SLE patients possess an ongoing production of type I interferons
and subsequently an increased expression of type I interferon
regulated genes, termed IFN-signature, which correlates with
autoantibodies and disease activity (126–128). This type I
interferon synthesis is induced by immune complexes containing
nucleic acid via Toll-like receptor (TLR) ligation. In addition
to their antiviral features, type I interferons contribute to the
activation of the adaptive immune system, e.g., by activation of
autoreactive T and B cells (Figure 2) (129, 130). T cell signaling
alterations and hyperactive B cells, producing and presenting
autoantibodies against nuclear complexes to T cells, constitute
the main drivers of SLE. The important role of B cells has
been demonstrated in a murine model lacking this lymphocyte
population (131). In addition to that, the same group showed that
B cells also play an antibody-independent role in murine lupus
in their function as antigen presenting and cytokine secreting
cells (132).

Alterations in B cell maturation and differentiation affect
several B cell subsets, targeting different checkpoints of B
cell development. In SLE patients the frequency of antibody
producing plasma cells in the peripheral blood is increased
and correlates with autoantibody production and disease
activity (133). It has been demonstrated that amongst
others the overexpression of BAFF/BLyS (B-cell activating
factor/B-lymphocyte stimulator), type I interferon and Blimp-1
(B lymphocyte-induced maturation protein-1) is responsible for
these alterations in SLE patients (134–136).

Although B cells have emerged as central players in SLE,
B cell depletion failed repeatedly as a therapeutic strategy in
clinical trials. For example, the EXPLORER study demonstrated
that rituximab, a CD20 antibody, did not show any statistically
significant efficacy in achieving treatment response compared to
placebo. Moreover, a recent reanalysis confirmed these findings,
reevaluating the data with the help of newly available disease
activity scores (137, 138).

There is only one therapeutic antibody approved by the
FDA and the EMA for SLE therapy, namely belimumab, which
neutralizes BAFF/BLyS and thereby decreases the number of
newly formed B cells (139, 140).
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The management of SLE strongly depends on the course of
the disease. Glucocorticoids represent highly effective agents in
order to immediately control the inflammatory process in SLE.
Systemic glucocorticoids are required as initiation therapy in
severe SLE, whereas maintenance immunosuppressive therapy is
added in order to enable steroid tapering. Nevertheless, especially
in acute, organ-threatening disease high-dose intravenous pulse
therapy (usually 250–1,000mg prednisone equivalent per day for
3 days) is often used to reduce disease activity (36). Interestingly,
Guiducci et al. demonstrated that oral glucocorticoids (5–20mg
per day) modulate multiple gene expression pathways but the
IFN pathway (including 36 type-I-IFN-inducible transcripts) is
not affected in SLE patients. In contrast, the IFN signature was
normalized after intravenous pulse therapy, which correlates
with a reduction in pDC. The IFN-α production was reduced
after a combined inhibition of TLR7 and 9 in purified pDC
indicating that continuous triggering of TLR7 and 9 in these cells
by immune complexes containing nucleic acid in SLE patients
counteracts the activity of glucocorticoids on the IFN pathway.
Thus, TLR7, and 9 inhibitors could be effective as glucocorticoid-
sparing drugs (128).

However, the mechanism of glucocorticoid action in SLE
patients is largely unknown. A study in MRL/MpSlac-lpr mice
with systemic autoimmune symptoms similar to human SLE
analyzed prednisone action on plasma cell differentiation with
regard to the impact of regulatory factors, including IL-21,
Blimp-1, and Bcl-6 (B cell lymphoma-6—essential for germinal
center development). The percentages of plasma cells and plasma
cell precursors as well as activated T cells were decreased after 13
weeks of prednisone treatment (Figure 2). In addition, serum IL-
21 and the expression of splenic Blimp-1 and Bcl-6 were reduced,
which may be correlated with the restriction of B lymphocyte
differentiation into plasma cells in these mice (141).

Haneda et al. went further in order to analyze which
step of B cell differentiation is affected by glucocorticoids.
They differentiated human B cells by sequential addition of
cytokines and other agents in a three-step culture system
to obtain activated B cells [CD19(hi)CD38(lo)IgD(-)],
plasmablasts [CD19(hi)CD38(hi)IgD(-)], and plasma cells
[CD19(lo/-)CD38(hi)IgD(-)]. They added low and high
concentrations of prednisolone at the beginning of each
differentiation step and found a significant inhibition of
B cell proliferation and differentiation in the last step,
whereas IgG production was decreased in step 2 and 3
only at high glucocorticoid concentrations (100 ng/ml) (142).
Interestingly, the number of circulating B cells was less affected
by glucocorticoids compared to T cells which showed a rapid
depletion in the circulation. In contrast, plasma cells and
naive B cells are markedly decreased in the peripheral blood
of SLE patients upon immunosuppressive therapy (143)—
indicating that the inhibition of T cell help might contribute
to the immediate glucocorticoid responses in SLE (144).
Using transcriptome data to generate a pathway-level map of
glucocorticoid effects across immune cell types, Franco et al.
identified that glucocorticoid treatment (i) up-regulated the
expression of PRDM1, which encodes BLIMP-1 involved in
terminal differentiation and reduced proliferation of B cells and

IL10, (ii) functionally impaired BCR signaling by suppressing
CR2 and CD19 which encode the two components of the B
cell co-receptor complex that serve as an enhancer of BCR-
mediated signaling and (iii) selectively impaired TLR signaling
by downregulation of TLR1, TLR6, and TLR7 (32).

However, responses to glucocorticoids differ from patient
to patient suffering from SLE. This may, at least in part, be
related to the glucocorticoid receptor α whose alteration has
been demonstrated in several autoimmune diseases (145–150).
In SLE patients, the receptor expression is reduced compared
to healthy controls. In addition, treatment with glucocorticoids
further reduces the receptor mRNA and protein expression
and it has been demonstrated that the receptor expression
is negatively associated with SLE disease activity. Thus, the
determination of receptor expression may be of importance with
regard to insensitivity to glucocorticoids or determination of
therapeutically effective dosages (151).

The glucocorticoid-induced leucine zipper (GILZ), an anti-
inflammatory protein whose expression is upregulated by
endogenous and exogenous glucocorticoids, has been in the focus
of an in vitro study in human B cells. In general, GILZ mRNA
and protein expression in peripheral blood mononuclear cells
obtained from patients with SLE were downregulated compared
to controls and correlated negatively with different markers of
disease activity. An analysis of human B cell subsets revealed
that intracellular GILZ was significantly decreased in circulating
HLA-DRlo plasmablasts [precursors of HLA-DRhi cells which
indicate active disease (152)] in patients with SLE. Treatment
with prednisolone restored the GILZ expression to the level
of control donors, a process described as transactivation—the
activation of the transcription of anti-inflammatory proteins—in
the introduction. Furthermore, an impaired induction of GILZ in
SLE patients under glucocorticoid treatment was associated with
an increased disease activity (153).

In the past decade, several additional factors including p-
glycoprotein and the macrophage migration inhibitory factor
(MIF) have been identified in the context of glucocorticoid
resistance in SLE [reviewed in (154)]. P-glycoprotein (P-gp), a
product of the multidrug resistance gene MDR-1, mediates the
excretion of numerous drugs including antibiotics and cytotoxins
but also glucocorticoids (155). P-gp is widely expressed in
a variety of tissues, including peripheral blood T and B
lymphocytes (156). However, P-gp expression is increased in
these cells in SLE patients and is correlated with disease
activity (157). Thus, elevated levels of P-gp lead to poor
disease control by systemic glucocorticoid therapy and are
associated with glucocorticoid resistance (157, 158). Beside
P-gp, the inflammatory cytokine macrophage MIF actively
reduces glucocorticoid action, participates in multiple stages
of the inflammatory response and is widely associated with
autoimmune disorders such as RA and SLE (159). MIF is
also known as a naturally occurring counter-regulator of
glucocorticoid action, correlates with disease activity in SLE
and mediates the development of glucocorticoid resistance in
SLE (159–162).

Although glucocorticoids are highly effective in the treatment
of SLE, these drugs bear the risk of severe adverse effects,
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especially when given over a longer period of time and/or
at higher dosages. A study analyzing the relationship between
glucocorticoids and damage accrual in SLE demonstrated that
medium to high mean daily prednisone doses and higher
cumulative doses were associated with an increased occurrence
of adverse effects. Eighteen patients developed new damage
attributable to glucocorticoid treatment including cataracts,
osteoporotic fractures, avascular necrosis, and diabetes mellitus
(163). New drug developments or improved formulations for
SLE therapy are promoted with the objective of reducing
the glucocorticoid dosage and thereby attenuating adverse
effects. The therapeutic effect of a liposome-based steroidal
methylprednisolone nano-drug has been evaluated in a murine
model of SLE compared to the free agent. The study revealed
that the steroidal nano-drug formulation is significantly more
effective in suppressing anti-dsDNA antibody levels, proliferation
of lymphoid tissue and renal damage, and in prolonging survival
compared to free methylprednisolone given at the same dosage
(164). The advantage of nano-liposomes is that they passively
reach the inflamed site due to the enhanced permeability of the
inflamed tissue vasculature, ensuring a reduced level in non-
inflamed tissues (165, 166). Due to these advantages, liposomal
glucocorticoids are also of great interest in the treatment of other
inflammatory diseases (167–170).

Th2 Lymphocytes Constitute Major
Contributors to the Pathogenesis of
Allergic Diseases
Contrary to Th1 cells CD4+ T helper cells type 2 (Th2) are
mainly involved in eosinophil activity as well as IgE production
caused by an immunoglobulin class-switch in B cells (171).
Th2 cells are characterized by the expression of GATA-3 and
the secretion of Th2 cytokines, namely interleukin (IL)-4, IL-
5, and IL-13 (172). Their development is promoted by a milieu
abundant in IL-2 and IL-4 that activate STAT6 signaling and
thereby promote Th2 differentiation (Figure 3). Thus, the key
role of IL-4 consists in both mediating Th2 cell function and
maintaining Th2 predominance by autocrine secretion.

Physiologically, Th2 cells exert their main function in the
control of helminth infections. This mechanism of defense,
referred to as the “type 2 response,” involves players of both
the innate and adaptive immune system. Besides the activation
and proliferation of Th2 cells and the secretion of their
characteristic cytokines, this cascade comprises eosinophil and
basophil granulocytes, mast cells as well as IgE secreted by
plasma cells (173). Considered to possess anti-inflammatory
characteristics, the type 2 response is thought to have evolved
as a mechanism of parasite control that simultaneously confines
collateral damage and promotes tissue repair (174). In this
regard, the antibody isotype IgE fulfills an important function in
responding to metazoan infections. Cross-linking of IgE bound
to high-affinity receptors (FcεRI) on mast cells and basophils
triggers the release of mediators that facilitate healing without
activating complement. However, rising hygienic standards have
reduced the necessity of antihelminthic defense mechanisms,
thereby depriving Th2 cells of their original target pathogens.

In this context, the role of a dysregulated type 2 response in
the pathogenesis of immune-mediated diseases has attracted
increasing attention.

With a lifetime prevalence of about 40%, allergic diseases
represent the most common immune disorder in western
countries, affecting both children and adults (175). The
German Health Interview and Examination Survey for
Children and Adolescents (KiGGS) revealed a prevalence
of 22.6% among children and adolescents with three main
diagnoses in descending order: atopic dermatitis (AD), allergic
rhinoconjunctivitis (AR), and asthma (176). The pathogenesis
of atopic disorders is defined by a predominant type 2 response
involving all major players described above (177–180). The
allergic cascade is set into motion by IL-4 and thymic stromal
lymphopoietin (TSLP) secreted from basophils (181). This
step promotes Th2 differentiation followed by the secretion
of IL-4 and IL-13 from activated T lymphocytes (Figure 2).
Subsequently, these cytokines cause B cells to undergo a class-
switch to IgE producing plasma cells. Upon allergen exposure
cross-linking of these antibodies bound to mast cells results
in a release of histamine, prostaglandins, and leukotrienes
that enhance paracellular permeability (Figure 2). As a result,
dendritic cells (DCs) infiltrate the affected tissue and maintain
T cell stimulation in their role as antigen-presenting cells
(APCs). Activated Th2 cells produce type 2 cytokines that
sustain the mechanisms underlying allergic reactions. While
IL-4 mainly induces the class-switch toward IgE production,
IL-13 additionally causes mucus production and airway
hyperresponsiveness (182, 183). On the other hand, IL-5
supports eosinophil survival and function (Figure 2) (184, 185).
The substantial role of the type 2 response in the pathogenesis of
allergic diseases has also been highlighted by the examination of
samples from patients suffering from AD (186), AR (187), and
asthma (188–191) demonstrating the preponderance of Th2 cells
and cytokines in the affected tissues.

Glucocorticoids, administered both topically and systemically,
represent indispensable agents in the treatment of atopic
disorders (192). Generally, these drugs are capable of reducing
the number of immune cells present at the site of allergic
reactions (Figure 2) (193, 194). On examining the effect of
glucocorticoids on Th2 cells in greater detail, a contradiction
becomes evident. Although these agents are successfully
administered to atopic patients, glucocorticoids have been
described to promote Th2 cell predominance (Figure 3)—a
well-described driver of allergic diseases (195–201). In order
to solve this apparent conflict, the mechanism of action of
glucocorticoids in Th2-driven disorders needs to be reviewed
more closely.

Firstly, one has to distinguish between short-term and long-
term drug effects. Temporary application of supraphysiological
glucocorticoid doses results in an inhibition of Th2 cytokine
production (Figures 2, 3) (202–205). This effect is mainly
mediated by glucocorticoid action on transcription factors as
described in the introduction (206–208). For instance, binding
of the GR to the IL-5 gene promoter region results in
the repression of the cytokine by interfering with GATA-
3 signaling (209). Moreover, this process seems to involve
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histone deacetylation. Similarly, inhibition of GATA-3, the key
transcription factor of Th2 differentiation, plays an important
role (210). Maneechotesuwan et al. showed that ligand-activated
GR and GATA-3 compete for importin-alpha interaction
enabling nuclear localization (211). Application of inhaled
fluticasone propionate (FP) prevented nuclear transport of
GATA-3 by means of this mechanism in asthmatic patients.
The authors also demonstrated that the induction of MAPK
phosphatase-1 (MPK-1) by FP results in the inhibition of p38
MAPK function, thus preventing GATA-3 phosphorylation. Also,
dexamethasone treatment decreased GATA-3 expression in an
asthmatic mouse model by inhibiting Notch1 signaling (212).
In contrast, chronic exposure to glucocorticoids may cause a
shift toward Th2 predominance. On the one hand, this thesis
is underlined by multiple studies analyzing the role of stress
in atopic diseases. Periods of stress are marked by elevated
levels of endogenous cortisol that promote Th2 predominance
and thereby susceptibility to allergy (213). The impact of
psychological stress on the course of disease in asthmatic patients
has been reviewed by Miyasaka et al. (214). On the other hand,
Ramirez revealed that prior glucocorticoid exposure provokes
type 2 cytokine production in T cells (201).

Secondly, the effect of glucocorticoid administration on
Th2 cells in atopic patients appears to differ from the Th2
enhancement generally caused by these drugs. Hydrocortisone
significantly reduced the presence of IgE, histamine, and
type 2 cytokines in serum and skin samples from AD
patients (215). Correspondingly, AR patients presented
a decrease in eosinophils, IgE, IL-4, and IL-5 in their
nasal fluid after topical and oral glucocorticoid application
(Figure 2) (187, 216–218). Lastly, the suppression of the type
2 response by glucocorticoid treatment was also observed
in bronchial tissue and bronchoalveolar lavage fluid from
asthmatics (219–221).

Finally, the beneficial glucocorticoid actions in allergic
diseases are not only caused by their impact on Th2
lymphocytes. On the contrary, several players of the type
2 immune response are equally affected by glucocorticoid
treatment. Namely, mast cell maturation and activation, FcεRI
expression as well as mediator production and release are
inhibited by glucocorticoid exposure (222–227). Furthermore,
glucocorticoids impede histamine release from basophils and
induce eosinophil apoptosis (228, 229). Recruitment and
function of APCs as well as the class-switch to IgE in B
cells are also restrained (230–232). Additionally, Klaßen et al.
demonstrated the importance of non-hematopoietic cells in
mediating glucocorticoid effects in a mouse model of allergic
asthma (233). In the end, it has to be mentioned that
recent findings emphasize the involvement of other CD4+
T helper cell subsets in the pathogenesis of allergic diseases.
Increasing importance has been ascribed to Th17, Th9, Th22,
and Th25 cells in this context (234). Similarly, the impact of
regulatory T cells (Treg) must not be neglected. Several studies
describe defective Treg activity as a major contributor to the
development andmaintenance of atopy (235–242). In this regard,
glucocorticoids greatly contribute to the restoration of Treg
function, thereby controlling the dysregulated type 2 immune
response (243–246).

MECHANISMS OF GLUCOCORTICOIDS IN
THE TREATMENT OF MALIGNANCIES
WITH A FOCUS ON LEUKEMIA

The last chapter will give a brief insight into the mechanisms
of glucocorticoid action in cancer therapies. Interestingly,
the effects of glucocorticoids on different cancer subtypes
and thereby the underlying mechanisms vary, even regarding
opposite effects. This may be related to the subtype of
cancer itself including its location, the affected cell type,
the microenvironment and emerging comorbidities. Also, the
glucocorticoid dose ranging from low to high daily dosages,
and the level of glucocorticoid receptor expression and activity
play an important role. In addition to that, the co-existence
of other receptors of the steroid receptor family, namely the
androgen and the estrogen receptors, can affect glucocorticoid
action, especially in breast or prostate cancer, since there are
also differences in receptor positive and receptor negative cancer
subtypes. Another beneficial effect on different subtypes of
cancer should not be neglected: Glucocorticoids are used as
co-therapy during chemotherapy or radiotherapy in order to
reduce side effects. They have been shown to improve mood,
increase appetite and thereby lessen weight loss, reduce fatigue,
diminish ureteric obstruction, prevent vomiting, and alleviate
pain (247–250).

In the following, we will concentrate on hematopoietic
malignancies which form a particular subset of cancerous
conditions that were first discovered as such in the Nineteenth
century when Rudolf Virchow coined the term “leukemia,”
meaning “white blood.” Glucocorticoids play a crucial role
in the treatment of these malignancies, among others as
part of the CHOP regimen to treat non-Hodgkin lymphoma
as well as in myeloma therapy. Nevertheless, due to the
considerable differences of glucocorticoid effects on diverse
cancer types, we will focus on one subtype here, namely
leukemia. The epidemiology of the disease is summarized in
Table 2 according to the German and Austrian cancer register
(www.gekid.de; www.statistik.at).

Four different types of leukemia are described: chronic
lymphoblastic leukemia (CLL), chronic myeloid leukemia
(CML), acute myeloid leukemia (AML), and acute lymphoblastic
leukemia (ALL). CLL is the most common leukemic disease in
western industrialized countries, where the disease constitutes
95% of the overall cases in older individuals (50 years and older)
(251). The main reason for the therapeutic use of glucocorticoids
in leukemia is their pro-apoptotic action.

Chronic Lymphoblastic Leukemia (CLL)
The inhibition of B cell apoptosis and the dysregulation of
proliferation and differentiation are themain causes of CLL. They
lead to an accumulation of mature CD5-positive, CD10-negative,
CD20 weakly positive, and CD23-positive B cells within blood,
bone marrow and solid lymphoid organs (252–254). Therefore,
the B cell itself, the B cell receptor and the subsequent signaling
pathways are novel targets of therapies using e.g., monoclonal
antibodies like rituximab or small molecules such as the kinase
inhibitor ibrutinib [reviewed in (253)].
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TABLE 2 | Epidemiology of leukemia.

Registry Cancer type Female Male Total

Rate Number of cases Rate Number of cases Number of cases

Germany Cancer (total) 336.7 223.019 436.5 259.013 482.032

Leukemia 8.1 5.550 13.2 7.489 13.039

Leukemia (mortality) 4.0 3.575 6.4 4.168 7.743

Austria Cancer (total) 421.8 19.393 581.4 21.342 40.735

Leukemia 9.0 420 16.5 586 1.006

Leukemia (mortality) 7.3 354 11.9 386 740

Rate and absolute numbers of cases of total cancer (without other tumors of the skin) and leukemic (including mortality) in Germany and Austria in the year 2014. Rate is given per

100,000 individuals per year (new disease) according to the German and Austrian cancer registry (www.gekid.de; www.statistik.at).

In healthy subjects, the administration of glucocorticoids
affects different subsets of the peripheral blood leukocytes,
resulting in a transient lymphocytopenia (255). This has been
demonstrated to be mostly caused by a glucocorticoid induced
redistribution of lymphocytes from the blood into the tissue,
affecting mainly T cells and B cells to a lesser extent (252, 256).
In CLL patients however, the administration of glucocorticoids
leads to an increase in blood lymphocytes accompanied by a rapid
reduction in spleen and lymph node sizes. Following the therapy,
the number of lymphocytes decreased even beneath pretreatment
levels (257, 258). Unfortunately, the underlying mechanism
is still unknown and glucocorticoids are consequently not
commonly used to treat CLL. Nevertheless, these drugs are
currently of interest to complement treatment with monoclonal
antibodies or small molecules. In 2016, Manzoni et al. analyzed
the in vitro effects of the combination of ibrutinib and
dexamethasone on the proliferation andmetabolic stress markers
in lymphocytes obtained from patients suffering from CLL. They
demonstrated an enhanced inhibition of cell cycle progression,
an increase in apoptosis and a decrease in DNA damage in
lymphoid B cells by a combination of dexamethasone and
ibrutinib compared to the tyrosine kinase inhibitor alone (259).

Chronic Myeloid Leukemia (CML)
Tyrosine kinase inhibitors also show remarkable success in
controlling CML, a disease of myeloid progenitor cells. This is
due to the knowledge of the underlying molecular pathogenesis
of this disease which arises mainly from a translocation t(9,22)
(q34;q11), resulting in transcripts and fusion proteins with
unusual tyrosine kinase activity (260). Thus, tyrosine kinase
inhibitors, e.g., imatinib and dasatinib, are used as standard
therapy with a high rate of remission (261). Consequently, the
use of glucocorticoids has become dispensable. Unfortunately,
this kind of molecular-targeted therapy is exceptional since the
molecular target is unknown in all other types of leukemia.

Acute Myeloid Leukemia (AML)
The heterogeneous character of AML impedes such targeted
therapies. Therefore, the treatment largely relies on the
use of aggressive chemotherapy (262). AML is characterized
by an infiltration of the bone marrow, blood, and tissues
by hematopoietic progenitor cells which lose their ability

to differentiate physiologically due to heterogeneous clonal
disorders. The extent of the genetic variability of AML patients
has been the focus of different studies aiming at customized
therapeutic approaches (263). In contrast to more recent
findings, it has been demonstrated in 2006 that short-term
treatment with high-dose methylprednisolone resulted in an
induction of differentiation and apoptosis of leukemic cells in
children with AML. Furthermore, the addition of this high-
dose glucocorticoid therapy to chemotherapy led to increased
remission rates and improved patient outcome (264). However,
high rates of glucocorticoid resistance in AML patients have been
reported in the last years, so that glucocorticoids are not suitable
as standard therapy (265).

Acute Lymphoblastic Leukemia (ALL)
In contrast, leukemic cells in ALL are much more sensitive
to glucocorticoids. Therefore, the administration of high-
dose glucocorticoids (i.e., dexamethasone and prednisolone)
represents the standard induction therapy in ALL (266). The
specific genotypes of ALL are diverse, including aberrant
expression of proto-oncogenes, chromosomal translocations
resulting in fusion genes and hyperdiploidy involving more than
50 chromosomes [reviewed in (267)]. These genetic alterations
contribute to changes in cellular function, such as a dysregulation
of differentiation, proliferation, and programmed cell death of
hematopoietic stem cells (254, 267, 268).

The glucocorticoid-induced cell death in leukemia is
mediated by the glucocorticoid receptor via transrepression
and transactivation (please see Introduction). It has
been demonstrated that the repression of anti-apoptotic
BCL2 and the activation of the antagonizing pro-
apoptotic BIM induce cell death in ALL (269, 270). Other
genes and even microRNAs have been described to be
regulated by glucocorticoids and thereby mediate apoptosis
(271–273). In addition, cell death is also triggered by
calcium release from the endoplasmic reticulum into the
cytosol and by an enhanced expression of thioredoxin-
interacting protein (TXNIP) which induces cell death by
increasing reactive oxygen species and/or blocking glucose
transport (270).

Finally, the underlying mechanisms which mediate
glucocorticoid-induced cell death in leukemia are
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diverse and not yet well-understood. The existence
and the development of glucocorticoid resistance after
long-term therapy aggravate treatment strategies or
reverse the achieved remission. This applies to both the
treatment of cancer and the treatment of inflammatory
autoimmune diseases.

CONCLUDING REMARKS

After highlighting the effects of glucocorticoids in different
immune cells in the context of a variety of immunopathologies,
we have to conclude that the understanding of the mode
of glucocorticoid action in the scope of immune responses
and glucocorticoid resistance is still incomplete. Although
glucocorticoids have ranked among the most potent
immunosuppressive drugs in daily clinical care for more
than 70 years, knowledge on their mechanisms of action on
cellular and sub-cellular levels in an immune cell type-specific

manner and in the context of the respective immunopathology

remains scarce. Further research into this topic will enhance
our comprehension of the capacity spectrum of glucocorticoid
action and the establishment of glucocorticoid resistance, also
providing guidance for personalized therapy.
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