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ALGORITMA PENGAWAL BERINSPIRASIKAN HOMEOSTATIK UNTUK 

PELUNCUR BAWAH AIR BERAUTONOMI YANG DIPACU SECARA 

HIBRID 

ABSTRAK 

Peluncur bawah air yang dipacu secara hibrid yang dibentangkan di dalam tesis ini 

menggabungkan konsep peluncur bawah air yang dipacu menggunakan daya 

keapungan dengan kenderaan bawah air konvensional. Ia diklasifikasikan sebagai 

satu jenis peluncur bawah air yang baharu. Peluncur-peluncur bawah air sedia ada 

yang dipacu menggunakan daya keapungan telah dibuktikan sebagai alat yang hebat 

dalam aplikasi oseanografi. Ini adalah kerana ia murah, mempunyai ketahanan tinggi 

dan jimat tenaga. Walau bagaimanapun, peluncur jenis ini masih mempunyai 

kelemahan dari segi kelajuan dan pergerakan yang disebabkan oleh kekurangan 

sistem penggerak, pergerakan yang perlahan, kekurangan daya pacuan, dan bahagian 

kawalan luaran yang terhad. Tambahan pula, adalah sukar untuk mengawal peluncur 

bawah air kerana ketidaklelurusan yang tinggi dan kerumitan dinamik peluncur, 

beserta dengan persekitaran dan gangguan bawah air. Oleh itu, objektif utama kajian 

ini adalah untuk merekabentuk dan membangunkan algoritma pengawal yang 

membuatkan peluncur boleh suai walaupun menghadapi kekangan-kekangan ini. 

Satu pengawal berinspirasikan homeostatik yang kukuh dan boleh diharap telah 

direka untuk tujuan ini. Pengawal ini dapat menyesuaikan diri terhadap keadaan 

perubahan yang dinamik dan mampu untuk pampas gangguan dari arus air. 

Algoritma pengawal ini telah direka berdasarkan mekanisma kawalan semulajadi 

manusia dengan mengintegrasikan tiga sistem buatan: rangkaian neural, sistem 
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endokrin, dan sistem imun. Berdasarkan keputusan simulasi penandaarasan kaedah 

kawalan, pengawal homeostatik telah berjaya mencapai sudut anggul yang diingini 

dalam masa penetapan paling pantas, iaitu dengan 12.5 saat lebih pantas daripada 

model kawalan ramalan (MPC), 9 saat lebih pantas daripada pengatur linear 

kuadratik (LQR), 6.5 saat lebih pantas daripada pengawal rangkaian neural, dan 3.75 

saat lebih pantas daripada pengawal neuroendokrin. Di samping itu, pengawal 

homeostatik telah dapat mengoptimumkan jisim balast dan jarak jisim gelongsor 

bagi mencapai sudut anggul yang dikehendaki dengan memendekkan jarak jisim 

gelonsor sehingga 53.7% dan mengurangkan jisim balast sehingga 17.7% apabila 

dibandingkan dengan LQR dan MPC. Secara keseluruhan, pengawal homeostatik 

telah mencapai prestasi terbaik berbanding dengan pengawal LQR, MPC, rangkaian 

neural and neuroendokrin. Tambahan pula, analisis-analisis pengesahan antara 

keputusan simulasi dan eksperimen telah menunjukkan bahawa sistem kawalan 

homeostatik menghasilkan prestasi yang sangat memuaskan, dengan pengawal 

homeostatik dapat mencapai sudut yang dikehendaki. 
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HOMEOSTATIC-INSPIRED CONTROLLER ALGORITHM FOR A 

HYBRID-DRIVEN AUTONOMOUS UNDERWATER GLIDER 

ABSTRACT 

The autonomous hybrid-driven underwater glider presented in this thesis combines 

the concept of a buoyancy-driven underwater glider and a conventional autonomous 

underwater vehicle. It is classified as a new kind of autonomous underwater glider. 

The existing buoyancy-driven gliders have proven to be powerful tools in 

oceanographic applications. This is because they are inexpensive, high-endurance 

and energy-efficient. However, they still have weaknesses in terms of speed and 

manoeuvrability due to the under-actuated system; relatively slow; limited 

propulsion forces; and limited external control surfaces. Furthermore, it is difficult to 

control the glider because of the high nonlinearity and complexity of the glider 

dynamics, coupled with the underwater environments and disturbances. Thus, the 

main objective of this research is to design and develop a controller algorithm that is 

able to make the glider adaptive despite facing these constraints. A robust and 

reliable homeostatic-inspired controller system has been designed for this purpose. 

The controller is able to adapt efficiently to the dynamically changing conditions and 

is able to compensate the disturbance from water currents. The controller algorithm 

has been designed based on the human innate control mechanism by integrating three 

artificial systems: the artificial neural network (ANN), artificial endocrine system 

(AES), and artificial immune system (AIS). According to simulation results of 

control methods benchmarking, the homeostatic controller was able to achieve the 

desired pitch angle at the fastest settling time, which was 12.5 seconds faster than the 
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model predictive control (MPC); 9 seconds faster than the linear-quadratic regulator 

(LQR); 6.5 seconds faster than the neural network (NN) controller; and 3.75 seconds 

faster than the neuroendocrine controller.  In addition, the homeostatic controller was 

able to optimise the ballast mass and distance of the sliding mass in order to achieve 

the desired pitch angle by shortening the sliding mass distance up to 53.7% and 

reducing the ballast mass up to 17.7% when compared with the LQR and MPC. 

Overall, the homeostatic controller has achieved the best performance compared 

with the LQR, MPC, NN and neuroendocrine controllers. Furthermore, the 

validation analyses between the simulation and experimental results have shown that 

the homeostatic control system produces very satisfactory performance, with the 

homeostatic controller able to achieve the desired angle.    

   



 

1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background  

 The oceans play an essential role in the future existence of all human beings. 

The bountiful oceanic resources such as food, oil, and gas have inspired humans to 

explore the ocean and marine environment for the benefit of mankind. Although the 

animate and inanimate ocean's resources are critical to human life, the ocean can also 

threaten human life through natural phenomena such as tsunamis and underwater 

earthquakes. These effects have made many researchers take progressive action to 

explore the full depths of the ocean resources as well as to monitor ocean activities. 

 In recent years, the scientific exploration of the ocean has expanded rapidly 

through the use of robotic technologies. Autonomous underwater vehicle (AUV) 

technology has been used as an important instrument in measuring and gathering 

oceanographic data. AUV is an untethered underwater platform that travels 

underwater freely with some degrees of autonomous operation. The AUV controls 

itself while performing a predefined mission and task, and it has an onboard power 

supply and other components. AUVs are able to gather many more data in a short 

duration than traditional methods such as expendable sensor probes and floats 

(Woithe and Kremer, 2009). However, the conventional propeller-driven AUVs are 

not suitable for a long-endurance missions due to the low efficiency in power 

consumption (Mahmoudian et al., 2010).  
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 As a consequence, the interest in developing autonomous underwater gliders 

(AUGs) as a new breed of AUVs has experienced a substantial increase due to the 

high demand in long-term underwater exploration applications. Existing AUGs such 

as Slocum (Webb et al., 2001), Spray (Sherman et al., 2001), Seaglider (Eriksen et 

al., 2001), and Deepglider (Osse and Eriksen, 2007) were developed as tools for 

oceanographic applications. They were designed to meet the demand for underwater 

vehicles with low energy consumption that could be used for long-term deployment.  

 The typical design of the AUG is buoyancy-driven, having fixed wings, 

internal masses, a ballast pump, and a rudder. Thus, the buoyancy-driven AUG 

moves vertically through the ocean water column by controlling their pitching angle 

and depth through the internal masses and ballast pump, respectively. Figure 1.1 

shows the motion of a buoyancy-driven autonomous underwater glider.  

 

Figure 1.1: Gliding motion of autonomous underwater glider (AUG) 

 Although the existing buoyancy-driven AUGs have already demonstrated 

high energy efficiency and high endurance, these gliders still have several 

limitations. They are considered to be an under-actuated system; are relatively slow; 
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have limited external moving surfaces; and have major constraints for manoeuvring 

and control.  

 In terms of controller methods, numerous classical and modern control 

systems have been used to control AUVs and AUGs. Simple proportional-integral-

derivative (PID) controllers and linear-quadratic regulators (LQR) have been used to 

control most existing gliders attitude and motion (Bachmayer et al., 2003; Kan et al., 

2008; Leonard and Graver, 2001; Mahmoudian and Woolsey, 2008; Seo et al., 2008; 

Wang et al., 2009). The nonlinear robust control method such as sliding mode 

control (SMC) has also been implemented to control underwater gliders (Jun et al., 

2009; Yang and Ma, 2010). However, the main drawback in SMC is the chattering 

effect, which can degrade the performance of the system, and may even lead to 

instability. Although these controller methods have already demonstrated acceptable 

control performance, the underwater environment imposes several restrictions on the 

design of the glider and its controller. Due to the nonlinearity and complexity of the 

glider dynamics and underwater environment, the glider should be truly autonomous, 

which means that it will operate steadily and adapt to its environment. In order to 

have those abilities, biologically-inspired control systems should be explored.  

 Biological systems should be considered because they are autonomous and 

adaptive in nature. They develop and maintain their stability and function through 

mechanisms such as self-organization, evolution, adaptation, and learning. Due to 

some limitations related to real world problems, biologically-inspired methods are a 

promising alternative to the classical artificial intelligence (AI) paradigm. One 

possible approach originates from the human biology process, known as 
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homeostasis, which maintains a stable state in the face of massively changing 

conditions. 

 

1.2 Problem Statements 

 The problem statements of this research work are divided into two aspects: 

the controller and the underwater glider platform.  Thus, the problem statements of 

this research work are as follows: 

 

1.2.1 The high nonlinearity of the glider dynamics and underwater disturbances 

 limit the controller adaptability while maintaining the overall stability 

 Although researchers have previously proposed and implemented several 

controller methods to control AUVs and AUGs, they still face difficulties in tuning 

the controller gains to maintain overall stability and high quality response when the 

control performance degrades due to significant changes in the vehicle dynamics and 

its environment. The high nonlinearity and time-variance of underwater vehicle 

dynamics, and unpredictable underwater disturbances such as the fluctuating ocean 

currents are the main reasons that make it difficult to control underwater vehicles 

such as the underwater glider (Amin et al., 2010a; Budiyono, 2009; Yuh, 2000). 

Thus, it is highly desirable to design a controller that is self-tuning and has an 

adaptive ability to deal with these constraints.  

 One of the solutions is by implementing neural networks as a controller for 

the motion control system of the glider, due to their ability to deal with nonlinearity 
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and to adapt to the changing conditions. Several researchers have used neural 

networks to control AUVs (Ishii and Ura, 2000; Li and Lee, 2005; van de Ven et al.,  

2005; van de Ven et al., 2007). Although the neural network has the ability to 

overcome the constraints, it has a low convergence rate (Bao et al., 2011). In 

addition, none of the previous research works have implemented neural networks to 

control underwater gliders. 

  

1.2.2 Under-actuated platform with limited external control surfaces reduces the 

 underwater glider efficiency in terms of speed and manoeuvrability  

 The existing buoyancy-driven AUGs are considered to be underwater 

vehicles with high energy efficiency, where the energy consumption is less than that 

of propeller-driven AUVs. However, AUGs have a low degree of manoeuvrability 

and low speed due to the limited external control surfaces and propulsion forces. 

These limitations make it difficult for the AUGs to follow prescribed trajectories 

correctly and to penetrate the massive ocean circulation and coastal currents (Wang 

et al., 2010). On the other hand, conventional AUVs, which are driven using a 

propeller, are faster than the AUGs, but they are still considered to be under-actuated 

vehicles with a low degree of manoeuvrability. In addition, the AUVs' endurance 

capability for a long deployment mission is lower than that of the AUGs, due to the 

low energy efficiency of the AUVs.  Therefore, changing the vehicle design and 

configuration could increase the glider's efficiency (Jenkins et al., 2003).   
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1.3 Research Objectives 

 The main objective of this research is to design a homeostatic controller 

algorithm for a hybrid-driven autonomous underwater glider. Thus, the sub-

objectives are: 

i. To develop a mathematical model of a hybrid-driven autonomous 

underwater glider.  

ii. To design, develop and implement a homeostatic controller algorithm 

of the glider motion control system for the highly nonlinear ocean 

environment. 

iii. To design and develop the hybrid-driven autonomous underwater glider 

platform for oceanographic sensing applications. 

 

1.4 Research Scopes 

 In order to fulfil the stated objectives, the scope of this research is divided 

into three phases: glider modelling and design, controller algorithm development, 

and prototype development. In the glider modelling and design phase, the hybrid-

driven AUG has a cylindrical hull with controllable wings, a rudder, a ballast pump, 

internal moving mass, and a propeller. Thus, the hybrid-driven AUG can be 

propelled using buoyancy and/or propeller. In order to model this glider, the 

buoyancy-driven AUG and the propeller-driven AUG have first been modelled as a 

decoupled model of the hybrid-driven AUG. However, in this thesis, a coupled 

model is presented instead of a decoupled model, to represent the hybrid-driven 

AUG. These models have been mathematically modelled based on the Newton-Euler 
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approach and the presence of water currents as a disturbance has been taken into 

account. Several assumptions have also been accounted for in order to model the 

glider mathematically. These assumptions are as follows: 

i. The centre of gravity (CG) is assumed to be located slightly under the 

centre of buoyancy (CB) for the purpose of achieving a stable, full-

submerged underwater glider.   

ii. Wind shearing effects are neglected in order to model the water 

currents. 

iii. The fixed point mass in the glider mass configuration is assumed to be 

zero. 

iv. In order to derive the Froude-Kriloff forces, the rigid body of the glider 

is assumed to be neutrally buoyant and is considered a homogeneously-

distributed mass. 

 The hydrodynamics of the hybrid-driven AUG have been estimated by using 

two methods: the analytical method based on the Slender-body theory and the 

computational fluid dynamics (CFD) method. The Slender-body theory analysis was 

simulated by using MATLABTM. On the other hand, FluentTM and GambitTM were 

used for simulating the CFD. The purpose of using these methods is to compare and 

analyse the accuracy of the estimated coefficients values of the glider 

hydrodynamics. Then, each model has been simulated by using MATLABTM in 

order to examine their stability, observability and controllability in an open-loop 

system.  
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 In the controller algorithm phase, three artificial systems are required to 

design the homeostatic controller algorithm. These three systems are an artificial 

neural network (ANN), an artificial endocrine system (AES), and an artificial 

immune system (AIS). The ANN is designed as the controller backbone; the AES is 

designed as the weight tuner; and the AIS is designed as the optimiser. These three 

systems are combined into a single system to control the glider's overall motion. The 

algorithm has been simulated by using MATLABTM. However, in order to analyse 

and benchmark the performance of this controller, a performance comparison among 

the LQR, model predictive control (MPC), neural network (NN) control, 

neuroendocrine controller, and homeostatic controller has been carried out. Several 

limitations and considerations have been made in order to design, develop and 

analyse the homeostatic controller. These limitations and considerations are as 

follows: 

i. Only the Euler angles are considered as the desired outputs. 

ii. The glider position is neglected as the parameter of interest.  

iii. The water currents are considered to be unmeasured disturbances, and 

the velocity of the water currents is assumed to be greater than zero but 

less than the glider velocity. 

iv. Every neuron of the ANN is assumed to be affected by one artificial 

hormone of the AES. 

 Lastly, for the prototype development phase, the glider design is drawn by 

using SolidworksTM. Then, the glider structure is fabricated, with an aluminium alloy 

being used as the material for the glider structure. The mechanical and electronic 

portion, which consists of the actuator module, motor and propeller module, 
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controller module, power module, sensor module, and data logger module, is 

installed, configured and assembled into the glider structure. The system integration 

process is completed after the functionality of the mechanical and electronics parts 

have been tested independently. Then, several experimental tests of the system are 

conducted. The experimental testing is divided into two types: sea test and diving 

pool test. These tests are conducted in order to examine the performance of the glider 

system in terms of buoyancy, stability, operation, motion and to validate controller 

performance by comparing the experimental results with the simulation results. 

 

1.5 Thesis Outline 

 Overall, this thesis has eight chapters and is organized as follows. Chapter 1 

presents the introduction of this research work. Section 1.1 describes the research 

background. The problem statements are described in Section 1.2. Section 1.3 

presents the research objectives, while Section 1.4 describes the research scope in 

order to fulfil the research objectives. Finally, Section 1.5 presents the thesis outline.  

 The literature review is discussed in Chapter 2. The literature review 

extensively discusses related and significant previous research works about the 

AUVs and AUGs. Section 2.2 reviews the historical aspects of AUVs and AUGs. 

The designs and characteristics of several AUGs are presented in Section 2.3. The 

modelling and controller methods of the AUVs and AUGs are reviewed in Section 

2.4 and Section 2.5, respectively. Section 2.6 discusses in detail the homeostasis 

mechanism and homeostatic control system. A summary of this chapter is presented 

in Section 2.7. 
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 Chapter 3 presents the methodology of the research work, which covers the 

aspects of modelling, controller design, prototype development, system design, the 

integration process and testing. Section 3.2 describes the overall implementation 

process of the research work. The system design, which covers the general system 

architecture of the glider and the system flowchart for each driving mode, is 

presented in Section 3.3. 

 Chapter 4 extensively describes the modelling of the hybrid-driven 

autonomous underwater glider. Section 4.2 discusses the generic kinematics model 

of the glider. The dynamics model of the glider is presented in Section 4.3. Section 

4.4 describes the hydrodynamics estimation of the glider. Finally, the nonlinear 

equations of motion for the hybrid-driven glider model are presented in Section 4.5. 

 Chapter 5 presents the design and algorithm of the homeostatic controller. 

Section 5.2 describes the overall design and framework of the homeostatic 

controller. Section 5.3 discusses the artificial neural network (ANN) that was 

designed as the backbone of the homeostatic controller. The artificial endocrine 

system (AES) that was designed as the weight tuner for the controller is presented in 

Section 5.4. Section 5.5 discusses the  artificial immune system (AIS) that was 

designed as the optimizer for the controller. Lastly, Section 5.6 illustrates the 

algorithm of the homeostatic controller.  

 Chapter 6 presents the prototype development and system integration. In this 

chapter, 3D modelling of the hybrid-driven AUG via CAD software is discussed in 

Section 6.2. Then, the prototype development in terms of fabrication and mechanical 

system development is described in Section 6.3. Section 6.4 discusses the electronic 

components and system integration. A summary is presented in Section 6.5. 
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 Chapter 7 presents the results and discussion of the research work. Section 

7.2 discusses the simulation results of hydrodynamics estimation. Section 7.3 

presents the simulation results of the homeostatic control system. In Section 7.4, the 

benchmarking of controller performance analysis for several controller methods 

including the homeostatic controller is presented. The prototype testing and 

experimental results in the diving pool and sea trial, which include the analysis of the 

real-time closed-loop system test and validation are discussed in Section 7.5. Finally, 

a summary is presented in Section 7.6.  

 Finally, conclusions of this research work and recommendations for future 

works are presented in Chapter 8.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 The literature review discusses in detail the AUV and AUG technologies; this 

includes a historical overview, designs and characteristics, modelling, and control 

methods. Additionally, the process of homeostasis and the topic of homeostatic 

control systems are discussed extensively. Figure 2.1 shows the overview of the 

literature review. 

 

2.2 Historical Overview of AUV and AUG 

 The development of underwater vehicles was established a long time ago. It 

began with the production of the first human-controlled submarine, which was built 

by Van Drebbel in 1620 (Roberts and Sutton, 2006). However, this submarine was 

not used for naval operation. The first submarine for naval operation was built by 

David Bushnell in 1776 (Blidberg, 2001). However, this submarine did not operate 

efficiently; carbon dioxide levels rose quickly due to the air supply duration of only 

for thirty minutes. As a consequence of these problems, the interest in designing an 

unmanned underwater vehicle (UUV) increased dramatically.  

 



 

13 
 

UUV

Towed vehicle ROVAUV

Glider MicroSurvey Hybrid

Propeller-driven

DesignModels

Buoyancy-driven

Concepts

Hybrid-driven

Modeling Control

Constraints

Motion GuidanceMission 

Sensors

Methods

PID AdaptiveNNSMCLQR Fuzzy Bio-inspired

Animal-Inspired Human-Inspired

Homeostatic

Controllable 
external 

actuators (wings 
& rudder)

Fixed external 
actuators (wings 

& rudder)

 

Figure 2.1: The overview of the literature review. The highlighted box indicates the focal points of this research work 
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 An UUV is a mobile underwater robot that is able to perform tasks in areas of 

underwater operation that may be restricted or hazardous for humans. According to 

Roberts and Sutton (2006), the first UUV was designed by Whithead in 1868 as a 

self-propelled torpedo. Subsequently, the UUV had been commercialized in the 

1970s, with commercial UUVs being divided into two classes: autonomous 

underwater vehicles (AUVs) and remotely operated vehicles (ROVs).  

 ROVs have an open-frame structure and are tethered by an umbilical cable. 

The umbilical cable is used to supply power to the vehicle and to transfer data and 

commands. The ROV is the most commercial UUV. It has been used extensively to 

perform underwater tasks in the offshore industry such as oil and gas facility 

installation, oil rigs inspection, cable or pipeline inspection and lay-out, scientific 

sampling, search and rescue operations, and mine search in military operations. 

According to Christ and Wernli (2007), the ROV technology reached maturity in the 

1980s and was established as commercial UUV technology by the early 1990s. 

However, ROVs are limited to a few applications, which are related to deeper water 

environments due to the very high operational costs, difficulties of handling the long 

cable, operator fatigue and safety issues (Yuh, 2000). As a consequence of these 

limitations, the demand for AUVs increased dramatically.  

 

2.2.1 Autonomous Underwater Vehicle (AUV) 

 An AUV is an untethered underwater platform that travels freely with some 

degrees of autonomous operation. The AUV controls itself while performing a 

predefined task, and it has an onboard power supply and other components such as 
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sensors. AUVs have many advantages in executing difficult underwater operations. 

The main advantage is that the AUV is operated autonomously, which means 

without human control. Thus, it is capable of performing dangerous tasks that 

humans are not able to do efficiently. Currently, AUVs are used for many 

applications such as a scientific surveys, oceanographic sampling, under-ice surveys, 

and military operations (Antonelli et al., 2008).  

 In the 1970s to 1980s, testbeds of AUVs had been developed in order to 

define the potential of these autonomous underwater platform systems. In the 1970s, 

the underwater vehicle of Unmanned Arctic Research Submersible (UARS) and 

Self-Propelled Underwater Research Vehicle (SPURV) were developed by the 

University of Washington. These vehicles were used to gather data in the Arctic 

region (Blidberg, 2001). Other testbeds development platforms were also fabricated, 

and there were some successes and many failures. The main problem was the limited 

computer technology available during that time. 

 In the 1980s to 1990s, the advancement in computer technology had 

tremendously increased, and it was a turning point for AUV technology. During this 

time, the proof of concept of the AUV prototypes was developed, tested and used. In 

the following decade up until the millennium, AUVs grew to become the first 

generation of operational vehicle systems that were able to accomplish defined tasks. 

Thus, many researchers attempted to develop AUVs, with a focus on various 

operational tasks. This progressive development created new paradigms for AUV 

utilization; for example, the Autonomous Oceanographic Sampling System (AOSN) 

(Curtin et al., 1993), and provided the resources to move this technology closer to 

commercialization.  
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 After the twentieth century, the first truly commercial AUVs have become 

commercially available due to the demand for AUV technology for the purpose of 

commercial underwater applications. There were more than 46 AUV models in 1999 

(Budiyono, 2009; Yuh, 2000), and today there are hundreds of different operational 

AUVs have been designed, most of which are experimental (Alam et al., 2014).  

 Initially, AUVs were very large vehicles that were torpedo-shaped or 

submarine-shaped. These vehicles were equipped with navigation systems, 3D 

Doppler velocity loggers (DVL), six degree of freedom (6-DOF) inertial 

measurement units (IMU), and a suite of sensors. Currently, AUVs can be divided 

into four categories: micro AUVs, survey AUVs, hybrid AUVs, and underwater 

gliders. 

 The micro AUV is a tiny vehicle that weighs less than 5 kg and has been 

developed to deploy one specific sensor at a time (Rodríguez and Piera, 2005). 

Several types of micro AUVs have been developed; for example, the Ranger 

(Hobson et al., 2001), the HUSNA-1 (Wick and Stilwell, 2001), and the Serafina 

(Zimmer, 2006). These AUVs share a similar function and mechanical design with 

the survey AUV, which was designed as a cylindrical hull with a single tail-mounted 

propeller. They are very small in diameter and length which is around 9 cm and 1 m, 

respectively. Commonly, the majority of underwater research that has focused on 

swarm behaviour has used the micro AUV as a platform. 

 Survey AUVs have a torpedo-shaped hull with a single-mounted propeller. 

These AUVs use hydrophones for control. Survey AUVs can be categorised as 

small, medium and large. The small survey AUVs, such as Remote Environmental 
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Monitoring Units (REMUS) (Allen et al., 1997),  Fetch (Patterson and Sias, 1999) 

and ISiMI (Jun et al., 2009), have 1 m length and 15-20 cm diameter. These AUVs 

were extremely useful in several areas such as search and rescue, mapping chemical 

plumes, military reconnaissance, and profiling the water column of the ocean for 

scientific and acoustic measurements. REMUS was initially designed by Woods 

Hole Oceanography Institute (WHOI) and then by the HYDROID Corporation. 

There are over 70 REMUS designed for coastal environment operations; these 

vehicles cover the depth between 100 and 6000 m (Stokey et al., 2005).  

 Meanwhile, the medium survey AUVs have 0.5 m diameter and length of 2 

m. Examples of these vehicles include Dorado (Sibenac et al., 2002), Battlespace 

Preparation Autonomous Underwater Vehicles (BPAUV) (Rish  III et al., 2001), and 

Odyssey III (Damus et al., 2002). The medium size AUVs are used in various 

applications, which include oceanographic mapping using side scan sonar. These 

AUVs are designed for deep water applications that have a working depth range 

between 4500 and 6000 m.  

 Lastly, the large survey AUVs, such as the Hugin 3000 (Marthiniussen et al., 

2004), Autosub (Stevenson, 1996), and Theseus (Thorleifson et al., 1997) have 1 m 

diameter, 10 m length, and long-range endurance capabilities of hundred of 

kilometres. These AUVs are used for underwater mapping, cable laying, and pipeline 

tracking operations. They have been designed for depths ranging from 1000 to 3000 

m. For example, the Theseus AUV was developed to lay 190 km fibre-optic cable 

under the Arctic ice pack. This vehicle has 10.7 m length, 1.27 m diameter, 

displacement of 8600 kg, and 4 knots of nominal speed.  
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 The third class of AUV is the hybrid AUV. It is a new breed of AUV that 

integrates the aspects of the AUV and the ROV. There are several hybrid AUVs that 

have been designed such as Alive (Evans et al., 2001), Swimmer (Evans et al., 

2003), and Cetus (Trimble, 1998). The purpose of developing the hybrid AUV is due 

to some emerging applications requiring a vehicle to have rapid hovering and station 

keeping capabilities. For example, in some applications the vehicle needs to profile 

the water column vertically at a specific position. The conventional AUV cannot 

perform this operation. Thus, in order to have the hovering, station keeping and 

vertical profiling capabilities, the hybrid AUV is a suitable platform.  

   

2.2.2 Autonomous Underwater Glider (AUG) 

 The AUG is the fourth and most recent class of AUV. The development of 

the AUG has been driven by the need to develop a low-cost, energy efficient, and 

autonomous underwater platform that can be used for underwater operations for long 

periods of time. This underwater platform evolved from the autonomous 

instrumented profiling floats that have been used by oceanographers for collecting 

oceanographic data (Graver, 2005; Rudnick et al., 2004). The floats have buoyancy 

actuators so that they can ascend and descend vertically, but the motion cannot be 

controlled because it drifts with the ocean currents once these vehicle are released.  

 The concept of AUG, which uses buoyancy as the propulsion system, was 

formally introduced in 1989 by oceanographer Henry Stommel (Stommel, 1989). 

Stommel and his colleague Doug Webb introduced the winged AUV that utilised a 

ballast system and internal moving mass to control attitude. The idea began in 1988 
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when Doug Webb approached Stommel with the idea of a thermally-powered glider 

(Eriksen, 2003; Graver, 2005). The glider was named by Stommel as Slocum after 

Joshua Slocum, the first man who traveled alone around the world in a small sailboat 

known as Spray. According to Webb, unlike the floats, a glider with wings and tail 

could permit the glider to glide horizontally through vertical motion and to control 

its position and depth. In addition, by moving the internal mass inside the glider's 

hull, the glider could control its pitch and roll angle. Thus, this permits the glider to 

ascend and descend like a float, drifting with the current, but allowing the motion 

and path to be controlled.  

 In 1990, Stommel and Webb secured a research grant to develop a battery-

powered glider. The grant was awarded by the Office of Naval Technology. In 1991, 

the prototype of the battery-powered glider was tested in Wakulla Springs Florida 

and Seneca Lake New York, where the glider successfully made 29 dives in Wakulla 

Springs and 14 dives in Seneca Lake for a depth of 20 m (Graver, 2005; Simonetti, 

1992; Webb and Simonetti, 1997). All of the main features on this battery-powered 

glider prototype, which had an electric buoyancy pump, fixed wings and tail, and a 

moving mass, can be seen in today's underwater gliders. 

 Thus, the concept of a buoyancy-driven underwater glider has motivated the 

development of several operational gliders such as the Slocum glider (Webb et al., 

2001), Spray glider (Sherman et al., 2001), Seaglider (Eriksen et al., 2001), and  

Deepglider (Osse and Eriksen, 2007). These gliders were developed as a tool for 

oceanographic applications such as oceanographic sensing and sampling. These 

gliders have similar characteristics to the battery-powered glider prototype, which 

was developed by Stommel and Webb. Although they are still buoyancy-driven 
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gliders, their size, weight and configuration are slightly different. However, each of 

these gliders has the same objective, which is to meet the demand for a vehicle with 

low power consumption that could be used for long-term oceanographic operations. 

Most of these gliders are 20-30 cm in diameter and not more than 2 m in length.  

 The concept of gliding to reduce energy while diving through the water 

column of the oceans is also used by marine mammals such as dolphins, seals, and 

whales. These animals compress their bodies and lungs to make them heavy so that 

they are able to glide longer and dive deeper (Graver, 2005; Mahmoudian, 2009). 

This concept has also inspired numerous institutes to develop underwater gliders for 

research purposes such as the ALBAC (Kawaguchi et al., 1993), ROGUE (Graver, 

2005), Alex (Arima et al., 2008, 2009), Liberdade XRAY (Jenkins et al., 2003; 

Wood, 2009), WaveGlider (Wood, 2009), ITB-SGAUV (Sagala and Bambang, 

2011) and USM Glider (Ali Hussain et al., 2010).  

 Today, the development of underwater gliders has evolved from the 

buoyancy-driven mechanism to the hybrid-driven mechanism, which means that the 

glider is able to propel itself via buoyancy and/or propeller. The first hybrid glider, 

which is known as STERNE, was developed at the Ecole Nationale Superieure 

D'Ingenieurs (ENSIETA), in Brest, France, under the French Ministry for Defense 

(Graver, 2005; Moitie and Seube, 2001). STERNE is designed for surveying 

applications by gliding using its ballast tank and moving mass, or by hovering using 

its thruster.  

 In 2004, another hybrid glider was formally introduced by Alvarez et al. 

(2004). This hybrid glider was named Folaga after an aquatic bird, which known  as  
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Coot. The Folaga was designed with an actuation system that integrates the actuator 

set for propulsion and manoeuvring with buoyancy change and dislocation of mass 

(Caffaz et al., 2010). Then in 2009, a winged hybrid glider PETREL was designed 

and tested in Tianjin University, China (Wang et al., 2011; Wu et al., 2010). 

Although the power consumption of the buoyancy-driven AUG was less than that of 

the propelled AUV, it was obvious that the AUGs had limitations in terms of speed 

and manoeuvrability due to the limited propulsion forces and external control 

surfaces.  

 

2.3 Autonomous Underwater Glider Designs and Characteristics 

 This section discusses the designs and features of the existing AUGs, which 

group includes the hybrid-driven AUGs. The objective of this discussion is to guide 

the design of the hybrid-driven AUG so that the mathematical model, controller 

algorithm and prototype development of the glider could be developed.  

 The gliding flight of existing underwater gliders such as Slocum, Spray and 

Seaglider is buoyancy-driven, which means that they do not use thrusters or 

propellers. They have a cylindrical or ellipsoidal hull with nose and tail, wings, a 

rudder, a ballast pump, internal moving masses, and batteries as a power system. 

Internal electronic components include the sensors, microcontroller, communication 

module and data logger.  

 In order to travel in a zigzag pattern through the ocean, these vehicles change 

depth and pitch to glide.  The depth is varied by continuously controlling their   

buoyancy level from neutrally buoyant to negatively and positively buoyant using a  
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ballast pump, and the pitch is changed by controlling their internal moving mass. 

Conventionally, existing gliders have fixed wings, and they control their attitude 

(such as roll and pitch) by moving their internal masses and a rudder (Graver, 2005). 

They are relatively slow-moving due to conserved power, so that they could be used 

for long-duration missions. Their maximum speeds are 0.5 knot, and most of the 

power is used for ballast pumping (Jenkins et al., 2003).  

 In this work, there are 14 AUGs that have been reviewed in terms of 

mechanical and electronic designs and characteristics as well as control mechanisms 

and performance characteristics. These AUGs are: Slocum Battery and Slocum 

Thermal (Bender et al., 2008; Graver, 2005; Griffiths et al., 2002; Rudnick et al., 

2004; Webb et al., 2001; Wood, 2009), Spray (Bender et al., 2008; Graver, 2005; 

Griffiths et al., 2002; Rudnick et al., 2004; Sherman et al., 2001; Wood, 2009), 

Seaglider (Bender et al., 2008; Eriksen et al., 2001; Griffiths et al., 2002; Rudnick et 

al., 2004; Wood, 2009), Deepglider (Osse and Eriksen, 2007; Wood, 2009), ALBAC 

(Graver, 2005; Kawaguchi et al., 1993; Wood, 2009), Liberdade XRAY (ONR, 

2006; Wood, 2009), ROGUE (Graver and Leonard, 2001; Graver, 2005; Leonard 

and Graver, 2001; Mahmoudian, 2009), STERNE (Graver, 2005; Griffiths et al., 

2007; Hussain et al., 2011; Moitie and Seube, 2001; Wood, 2009), ALEX (Arima et 

al., 2008, 2009; Ichihashi et al., 2008), Folaga (Alvarez et al., 2009; Caffaz et al., 

2010), PETREL (Wang et al., 2010, 2011), Tsukuyomi (Asakawa et al., 2011, 2012), 

and Hybrid glider (Peng et al., 2013). Table 2.1 presents the general descriptions of 

these AUGs. 
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Table 2.1: General descriptions of the AUGs 

Glider 
Name 

Developer Year Propulsion Environment 

Slocum 
Battery 

WRC 1991 

Buoyancy 

Shallow water 

Slocum 
Thermal 

Shallow water 
with a 

thermocline 
Spray SIO 2001 

Shallow water 
Seaglider 

University of Washington 
2001 

Deepglider 2001 Deep water 

ALBAC University of Tokyo 1992 
Drop weight 

system 

Shallow water 

Liberdade 
XRAY 

SIO; University of Washington; 
WHOI; Bluefin Robotics; 
SPAWAR Systems Centre 

2006 
Buoyancy 

ROGUE Princeton University 
2001 

STERNE ENSIETA 
Hybrid (Propeller 

and Buoyancy) 
ALEX Osaka Prefecture University 2008 Buoyancy 

Folaga 

IMEDEA Institute; GraalTech; 
University of Pisa; University of 
Genova, Nato Undersea Research 

Centre (NURC) 

2003 
Hybrid (Jet-
pumps and 
Buoyancy) 

PETREL Tianjin University 2010 
Hybrid (Propeller 

and Buoyancy) 

Tsukuyomi 
Japan Agency for Marine-Earth 

Science and Technology; Kyushu 
University;  

2012 Buoyancy Deep water 

Hybrid 
glider 

Zhejiang University 2013 
Hybrid (Rotatable 

Thruster and 
Buoyancy) 

Shallow water 

 In Table 2.1, the environment of the operational glider is divided into two: 

shallow water and deep water. Generally, the depth range of shallow water is up to 

1500 m and the depth range of deep water is greater than 1500 m (Wood, 2009). 

Previously, there were several researchers have developed hybrid-driven underwater 

gliders. However, these researchers have either developed a hybrid-driven glider 

with no wings (Alvarez et al., 2009; Caffaz et al., 2010) or fixed wings (Wang et al., 

2010, 2011). Thus, these gliders are considered have a low degree of 
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manoeuvrability due to the limited external control surfaces such as controllable 

wings and rudders.  

 

2.3.1 Mechanical Designs and Characteristics 

 The review of the mechanical designs of the AUGs covers the hull, wings, 

rudder or vertical stabiliser, weight and payload. Table 2.2 presents the mechanical 

designs and characteristics of the AUGs. Basically, most of the reviewed underwater 

gliders, except the Liberdade XRay, have a cylindrical shape. The length of the hull 

of these gliders is between 1 m to 4.5 m, and the range of the hull's diameter is 

between 20 cm to 60 cm. Meanwhile, the range of the weight is between 10 kg to 

900 kg. Most of these gliders have fixed wings and vertical stabiliser (rudder). The 

wings provide hydrodynamic lift to propel the vehicle forward as it descend and 

ascend.  

 Although these gliders have similar mechanical design, the characteristics are 

slightly different. The purpose of changing the glider design, characteristic and 

configuration is to increase the glider efficiency.  As an example, the design of Spray 

is similar to the Slocum Battery. However, it has better hydrodynamic shape, which 

produced fifty percent less drag than the Slocum Battery (Sherman et al., 2001; 

Wood, 2009).  As another example, the design of Deeglider is similar in size and 

shape of the Seaglider but has more weigh and displacement. It uses composite 

pressure hull of carbon fibre and thermoset resin, making it capable of diving up to 

6000 m (Osse and Lee, 2007; Wood, 2009). Thus, by changing the glider design, 

characteristic and configuration, the glider efficiency could be increased.  
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