39,756,319 research outputs found
The Polarised Valence Quark Distribution from semi-inclusive DIS
The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of
opposite charge has been measured by the COMPASS experiment at CERN. The data
were collected in the years 2002-2004 using a 160 GeV polarised muon beam
scattered off a large polarised ^6LiD target and cover the range 0.006 < x <
0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry
A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an
evaluation of the first moment of Delta u_v + Delta d_v which is found to be
equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at
Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously
measured on the same data, this result favours a non-symmetric polarisation of
light quarks Delta u-bar = - Delta d-bar at a confidence level of two standard
deviations, in contrast to the often assumed symmetric scenario Delta u-bar =
Delta d-bar = Delta s-bar = Delta s.Comment: 7 pages, 3 figures, COMPASS, revised: details added, author list
update
Recommended from our members
Observation of Geo-Neutrinos
Geo-neutrinos, electron anti-neutrinos produced in beta decays of naturally
occurring radioactive isotopes in the Earth, are a unique direct probe of our
planet's interior. We report the first observation at more than 3 C.L.
of geo-neutrinos, performed with the Borexino detector at Laboratori Nazionali
del Gran Sasso. Anti-neutrinos are detected through the neutron inverse beta
decay reaction. With a 252.6 ton-yr fiducial exposure after all selection cuts,
we detected 9.9^{+4.1}_{-3.4}(^{+14.6}_{-8.2}) geo-neutrino events, with errors
corresponding to a 68.3%(99.73%) C.L. From the profile, the
statistical significance of the Borexino geo-neutrino observation corresponds
to a 99.997% C.L. Our measurement of the geo-neutrinos rate is
3.9^{+1.6}_{-1.3}(^{+5.8}_{-3.2}) events/(100ton-yr). This measurement rejects
the hypothesis of an active geo-reactor in the Earth's core with a power above
3 TW at 95% C.L. The observed prompt positron spectrum above 2.6 MeV is
compatible with that expected from european nuclear reactors (mean base line of
approximately 1000 km). Our measurement of reactor anti-neutrinos excludes the
non-oscillation hypothesis at 99.60% C.L.Comment: 8 pages, 4 figures, 3 table
A Method to Identify and Analyze Biological Programs through Automated Reasoning.
Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Dynamic spin-lattice coupling and nematic fluctuations in NaFeAs
We use inelastic neutron scattering to study acoustic phonons and spin
excitations in single crystals of NaFeAs, a parent compound of iron pnictide
superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural
transition at K and a collinear antiferromagnetic (AF) order at
K. While longitudinal and out-of-plane transverse acoustic
phonons behave as expected, the in-plane transverse acoustic phonons reveal
considerable softening on cooling to , and then harden on approaching
before saturating below . In addition, we find that spin-spin
correlation lengths of low-energy magnetic excitations within the FeAs layer
and along the -axis increase dramatically below , and show weak anomaly
across . These results suggest that the electronic nematic phase present
in the paramagnetic tetragonal phase is closely associated with dynamic
spin-lattice coupling, possibly arising from the one-phonon-two-magnon
mechanism
- …