23,301,970 research outputs found
Accurate spectroscopy of Sr atoms
We report the frequency measurement with an accuracy in the 100 kHz range of
several optical transitions of atomic Sr : at 689 nm, at 688 nm and at 679 nm. Measurements are performed with
a frequency chain based on a femtosecond laser referenced to primary frequency
standards. They allowed the indirect determination with a 70 kHz uncertainty of
the frequency of the doubly forbidden 5s^2^1S_0- 5s5p^3P_0 transition of
Sr at 698 nm and in a second step its direct observation. Frequency
measurements are performed for Sr and Sr, allowing the
determination of , and isotope shifts, as well as the
hyperfine constants.Comment: 12 pages, 16 figure
Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb
and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The
samples are transported over a distance of 6 mm to the geometric center of the
anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented
by a small modification of the QUIC trap and is free of losses and heating. It
allows all experiments using QUIC traps to use the highly homogeneous magnetic
fields that can be created in the center of a QUIC trap and improves the
optical access to the atoms, e.g., for experiments with optical lattices. This
mechanism may be cascaded to cover even larger distances for applications with
quantum degenerate samples.Comment: 7 pages, 8 figure
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
Extended morphometric analysis of neuronal cells with Minkowski valuations
Minkowski valuations provide a systematic framework for quantifying different
aspects of morphology. In this paper we apply vector- and tensor-valued
Minkowski valuations to neuronal cells from the cat's retina in order to
describe their morphological structure in a comprehensive way. We introduce the
framework of Minkowski valuations, discuss their implementation for neuronal
cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Bose-Einstein Condensation and Casimir Effect of Trapped Ideal Bose Gas in between two Slabs
We study the Bose-Einstein condensation for a 3-d system of ideal Bose gas
which is harmonically trapped along two perpendicular directions and is
confined in between two slabs along the other perpendicular direction. We
calculate the Casimir force between the two slabs for this system of trapped
Bose gas. At finite temperatures this force for thermalized photons in between
two plates has a classical expression which is independent of . At
finite temperatures the Casimir force for our system depends on . For
the calculation of Casimir force we consider only the Dirichlet boundary
condition. We show that below condensation temperature() the Casimir force
for this non-interacting system decreases with temperature() and at
, it is independent of temperature. We also discuss the Casimir
effect on 3-d highly anisotropic harmonically trapped ideal Bose gas.Comment: 4 page
Near-threshold production of omega mesons in the pn -> d omega reaction
The first measurement of the p n -> d omega total cross section has been
achieved at mean excess energies of Q = 28 and 57 MeV by using a deuterium
cluster-jet target. The momentum of the fast deuteron was measured in the ANKE
spectrometer at COSY-Juelich and that of the slow "spectator" proton p(sp) from
the p d -> p(sp) d omega reaction in a silicon telescope placed close to the
target. The cross sections lie above those measured for p p -> p p omega but
seem to be below theoretical predictions.Comment: 7 pages, 8 figures; second approach to describe the background has
been added; results changed insignificantly, EPJ in pres
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is
positionally consistent with the Cygnus Cocoon discovered by -LAT at GeV
energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected
from November 2007 to January 2013, the angular extension and energy spectrum
of ARGO J2031+4157 are evaluated. After subtracting the contribution of the
overlapping TeV sources, the ARGO-YBJ excess map is fitted with a
two-dimensional Gaussian function in a square region of , finding a source extension =
1.80.5. The observed differential energy spectrum is
photons cm
s TeV, in the energy range 0.2-10 TeV. The angular extension is
consistent with that of the Cygnus Cocoon as measured by -LAT, and the
spectrum also shows a good connection with the one measured in the 1-100 GeV
energy range. These features suggest to identify ARGO J2031+4157 as the
counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in
the star-forming region of Cygnus X, is interpreted as a cocoon of freshly
accelerated cosmic rays related to the Cygnus superbubble. The spectral
similarity with Supernova Remnants indicates that the particle acceleration
inside a superbubble is similar to that in a SNR. The spectral measurements
from 1 GeV to 10 TeV allows for the first time to determine the possible
spectrum slope of the underlying particle distribution. A hadronic model is
adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio
Damping of zero sound in Luttinger liquids
We calculate the damping gamma_q of collective density oscillations (zero
sound) in a one-dimensional Fermi gas with dimensionless forward scattering
interaction F and quadratic energy dispersion k^2 / 2 m at zero temperature.
For wave-vectors | q| /k_F small compared with F we find to leading order
gamma_q = v_F^{-1} m^{-2} Y (F) | q |^3, where v_F is the Fermi velocity, k_F
is the Fermi wave-vector, and Y (F) is proportional to F^3 for small F. We also
show that zero-sound damping leads to a finite maximum proportional to |k - k_F
|^{-2 + 2 eta} of the charge peak in the single-particle spectral function,
where eta is the anomalous dimension. Our prediction agrees with photoemission
data for the blue bronze K_{0.3}MoO_3.Comment: final version as published; with more technical details; we have
added a discussion of recent work which appeared after our initial cond-mat
posting; 13 pages, 5 figure
- âŠ