104 research outputs found

    Fracture of neck of femur with fracture of posterior column of acetabulum: a rare case of floating hip

    Get PDF
    Injuries around the hip joint are one of the most common orthopedic injuries and these types of injuries are grossly debilitating until treated properly. Simultaneous occurrence of fracture of proximal femur with fracture of ipsilateral acetabulum or pelvis is termed as floating hip injury. These injuries are very rare, only to be found 1 in 10,000 as well as there is lack of literature support regarding proper treatment protocol. Here we are going to present a case of fracture of neck of left femur along with fracture of left acetabulum in a 45 years old male undergone road traffic accident.

    Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment

    Get PDF
    The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements, which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. The proposed model can be used for the modeling of the angular velocity, aerodynamic torque, and power production of an arbitrary yaw misaligned wind turbine based on the incident velocity profile, wind turbine aerodynamic properties, and turbine control system. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system

    Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment

    Get PDF
    The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy, and resulting effect of wake steering on wind farm power production, are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system.Comment: 37 pages, 15 figure

    Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans

    Get PDF
    Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete

    Burden of injury along the development spectrum : associations between the Socio-demographic Index and disability-adjusted life year estimates from the Global Burden of Disease Study 2017

    Get PDF
    Background The epidemiological transition of non-communicable diseases replacing infectious diseases as the main contributors to disease burden has been well documented in global health literature. Less focus, however, has been given to the relationship between sociodemographic changes and injury. The aim of this study was to examine the association between disability-adjusted life years (DALYs) from injury for 195 countries and territories at different levels along the development spectrum between 1990 and 2017 based on the Global Burden of Disease (GBD) 2017 estimates. Methods Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate. Results For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced. Conclusions The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.Peer reviewe

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Estimating global injuries morbidity and mortality : methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    Background While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. Methods In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. Results GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. Conclusions GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.Peer reviewe
    corecore