6,839 research outputs found

    Robust nonparametric detection of objects in noisy images

    Full text link
    We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore important connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a finite sample performance of our test.Comment: This paper initially appeared in 2010 as EURANDOM Report 2010-049. Link to the abstract at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-abstract.pdf Link to the paper at EURANDOM repository: http://www.eurandom.tue.nl/reports/2010/049-report.pd

    Many-core applications to online track reconstruction in HEP experiments

    Full text link
    Interest in parallel architectures applied to real time selections is growing in High Energy Physics (HEP) experiments. In this paper we describe performance measurements of Graphic Processing Units (GPUs) and Intel Many Integrated Core architecture (MIC) when applied to a typical HEP online task: the selection of events based on the trajectories of charged particles. We use as benchmark a scaled-up version of the algorithm used at CDF experiment at Tevatron for online track reconstruction - the SVT algorithm - as a realistic test-case for low-latency trigger systems using new computing architectures for LHC experiment. We examine the complexity/performance trade-off in porting existing serial algorithms to many-core devices. Measurements of both data processing and data transfer latency are shown, considering different I/O strategies to/from the parallel devices.Comment: Proceedings for the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP); missing acks adde

    Platinum Group Metal-Doped Tungsten Phosphates for Selective C-H Activation of Lower Alkanes

    Get PDF
    Platinum group metal (PGM)-based catalysts are known to be highly active in the total combustion of lower hydrocarbons. However, through an alternative catalyst design reported in this paper by isolating PGM-based active sites in a tungsten phosphate matrix, we present a class of catalysts for selective oxidation of n-butane, propane, and propylene that do not contain Mo or V as redox-active elements. Two different catalyst concepts have been pursued. Concept A: isolating Ru-based active sites in a tungsten phosphate matrix coming upon as ReO3-type structure. Concept B: dilution of PGM-based active sites through the synthesis of X-ray amorphous Ru tungsten phosphates supported on SiO2. Using a high-throughput screening approach, model catalysts over a wide compositional range were evaluated for C3 and C4 partial oxidation. Bulk crystalline and supported XRD amorphous phases with similar Ru/W/P compositions showed comparable performance. Hence, for these materials, composition is more crucial than the degree of crystallinity. Further studies for optimization on second-generation supported systems revealed even better results. High selectivity for n-butane oxidation to maleic anhydride and propane oxidation to an acrolein/acrylic acid has been achieved

    A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level

    Get PDF
    CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining. Methods: NSG mice with subcutaneous AsPC1 xenograft tumors were treated with EGFR CAR T cell (± IL-2) or control BDCA-2 CAR T cell (± IL-2) (n = 7 each). Therapeutic T cells were genetically modified to co-express the CAR of interest and the luciferase CBR2opt. IL-2 was administered s.c. under the xenograft tumor on days 1, 3, 5 and 7 post-therapy-initiation at a dose of 25,000 IU/mouse. CAR T cell distribution was measured in 2D BLI and 3D µCT/BLT every 3-4 days. On day 6, 4 tumors were excised for cyclic IF where tumor sections were stained with a panel of 25 antibodies. On day 6 and 13, 8 tumors were excised from rhodamine lectin-preinjected mice, permeabilized, stained for CD3 and imaged by LSFM. Results: 3D µCT/BLT revealed that CAR T cells pharmacokinetics is affected by antigen recognition, where CAR T cell tumor accumulation based on target-dependent infiltration was significantly increased in comparison to target-independent infiltration, and spleen accumulation was delayed. LSFM supported these findings and revealed higher T cell accumulation in target-positive groups at day 6, which also infiltrated the tumor deeper. Interestingly, LSFM showed that most CAR T cells accumulate at the tumor periphery and around vessels. Surprisingly, LSFM and cyclic IF revealed that local IL-2 application resulted in early-phase increased proliferation, but long-term overstimulation of CAR T cells, which halted the early added therapeutic effect. Conclusion: Overall, we demonstrated that 3D µCT/BLT is a valuable non-isotope-based technology for whole-body cell therapy monitoring and investigating CAR T cell pharmacokinetics. We also presented combining LSFM and MICS for ex vivo 3D- and 2D-microscopy tissue analysis to assess intratumoral therapeutic cell distribution and status

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0K+KKS0B^0 \to K^+K^-K^0_S, B+K+KK+B^+ \rightarrow K^+K^-K^+, and B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+K+KK+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0K+KKS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase βeff(ϕ(1020)KS0)=(21±6±2)\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(45+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Measurement of WγW\gamma and ZγZ\gamma Production in ppˉp\bar{p} Collisions at s\sqrt{s} = 1.96 TeV

    Get PDF
    The Standard Model predictions for WγW\gamma and ZγZ\gamma production are tested using an integrated luminosity of 200 pb1^{-1} of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the WW and ZZ bosons, and photons with transverse energy ET>7E_T>7 GeV that are well separated from leptons. The production cross sections and kinematic distributions for the WγW\gamma and ZγZ\gamma are compared to SM predictions.Comment: 7 pages, 4 figures, submitted to PR
    corecore