238 research outputs found

    Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue.

    Get PDF
    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiring accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, seven fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. We believe that our studies have contributed to lower the overall uncertainty of breast tissue attenuation in the literature due to the relatively large sample sets, the novel measurement method, and by clarifying the difference between fresh and fixed tissue

    Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial)

    Get PDF
    Purpose To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. Materials and Methods In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29–85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. Results Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50–59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). Conclusion The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. © RSNA, 2015The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256

    Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial).

    Get PDF
    PURPOSE: To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. MATERIALS AND METHODS: In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29-85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. RESULTS: Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50-59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). CONCLUSION: The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. (©) RSNA, 2015.The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256

    Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer.

    Get PDF
    BACKGROUND: Mammographic density has been shown to be a strong independent predictor of breast cancer and a causative factor in reducing the sensitivity of mammography. There remain questions as to the use of mammographic density information in the context of screening and risk management, and of the association with cancer in populations known to be at increased risk of breast cancer. AIM: To assess the association of breast density with presence of cancer by measuring mammographic density visually as a percentage, and with two automated volumetric methods, Quantra™ and VolparaDensity™. METHODS: The TOMosynthesis with digital MammographY (TOMMY) study of digital breast tomosynthesis in the Breast Screening Programme of the National Health Service (NHS) of the United Kingdom (UK) included 6020 breast screening assessment cases (of whom 1158 had breast cancer) and 1040 screened women with a family history of breast cancer (of whom two had breast cancer). We assessed the association of each measure with breast cancer risk in these populations at enhanced risk, using logistic regression adjusted for age and total breast volume as a surrogate for body mass index (BMI). RESULTS: All density measures showed a positive association with presence of cancer and all declined with age. The strongest effect was seen with Volpara absolute density, with a significant 3% (95% CI 1-5%) increase in risk per 10 cm3 of dense tissue. The effect of Volpara volumetric density on risk was stronger for large and grade 3 tumours. CONCLUSIONS: Automated absolute breast density is a predictor of breast cancer risk in populations at enhanced risk due to either positive mammographic findings or family history. In the screening context, density could be a trigger for more intensive imaging

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue

    No full text
    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiring accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, 7 fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. We believe that our studies have contributed to lower the overall uncertainty of breast tissue attenuation in the literature due to the relatively large sample sets, the novel measurement method, and by clarifying the difference between fresh and fixed tissue.QC 20210108</p

    Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid

    No full text
    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range.QC 20210108</p
    corecore