286 research outputs found

    Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty

    Get PDF
    Background: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets. Results: Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty. Conclusion: The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search

    STELLAR: fast and exact local alignments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches.</p> <p>Results</p> <p>We present here the local pairwise aligner STELLAR that has full sensitivity for <it>ε</it>-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments.</p> <p>Conclusions</p> <p>STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at <url>http://www.seqan.de/projects/stellar</url>. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at <url>http://www.seqan.de</url>.</p

    Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma

    Get PDF
    Enhancer of zeste homologue 2 (EZH2), a member of the polycomb group protein family, plays a crucial role in the regulation of embryonic development and has been associated with the regulation of the cell cycle. Recently, several studies have shown that EZH2 is highly expressed in aggressive tumours, including human breast cancer, prostate cancer, and lymphomas. We thus analysed EZH2 expression using real-time reverse transcription–polymerase chain reaction, and correlated its expression status with various clinicopathological parameters in 66 patients with hepatocellular carcinoma (HCC). We found high expression of EZH2 in human liver cancer cell lines. Furthermore, EZH2 gene-expression levels in tumour tissue specimens (0.34±0.52) were significantly higher (P<0.0001) than those in the corresponding nontumour tissue specimens (0.07±0.09). The incidence of cancer cell invasion into the portal vein was significantly higher (P<0.001) in the high EZH2 expression group (26 of the 33, 79%) than in the low expression group (13 of the 33, 39%). However, there was no significant difference in the disease-free survival rate between the two groups. The findings of this study indicate that EZH2 mRNA expression was upregulated in human HCC and may play an important role in tumour progression, especially by facilitating portal vein invasion

    In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope

    Get PDF
    The availability of a noninvasive method to detect and quantify apoptosis in tumours will enable tumour response to several cancer therapies to be assessed. We have synthesised two radiotracers, annexin V and the N-succinimidyl-3-iodobenzoic acid (SIB) derivative of annexin V, labelled with radio-iodine (124I and 125I) and provided proof of the concept by assessing specific binding and biodistribution of these probes to apoptotic cells and tumours. We have also assessed the tumour uptake of [124I]annexin V in a mouse model of apoptosis. RIF-1 cells induced to undergo apoptosis in vitro showed a drug concentration-dependent increased binding of [125I]annexin V and [125I]SIB–annexin V. In the same model system, there was an increase in terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL)-positive cells and a decrease in clonogenic survival. Radiotracer binding was completely inhibited by preincubation with unlabelled annexin V. In RIF-1 tumour-bearing mice, rapid distribution of [125I]SIB–annexin V-derived radioactivity to kidneys was observed and the radiotracer accumulated in urine. The binding of [125I]SIB–annexin V to RIF-1 tumours increased by 2.3-fold at 48 h after a single intraperitoneal injection of 5-fluorouracil (165 mg kg−1 body weight), compared to a 4.4-fold increase in TUNEL-positive cells measured by immunostaining. Positron emission tomography images with both radiotracers demonstrated intense localisation in the kidneys and bladder. Unlike [124I]SIB–annexin V, [124I]annexin V also showed localisation in the thyroid region presumably due to deiodination of the radiolabel. [124I]SIB–annexin V is an attractive candidate for in vivo imaging of apoptosis by PET

    Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba

    Get PDF
    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription

    Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoamine oxidase A (MAO-A), a mitochondrial enzyme that degrades monoamines including neurotransmitters, is highly expressed in basal cells of the normal human prostatic epithelium and in poorly differentiated (Gleason grades 4 and 5), aggressive prostate cancer (PCa). Clorgyline, an MAO-A inhibitor, induces secretory differentiation of normal prostate cells. We examined the effects of clorgyline on the transcriptional program of epithelial cells cultured from high grade PCa (E-CA).</p> <p>Methods</p> <p>We systematically assessed gene expression changes induced by clorgyline in E-CA cells using high-density oligonucleotide microarrays. Genes differentially expressed in treated and control cells were identified by Significance Analysis of Microarrays. Expression of genes of interest was validated by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>The expression of 156 genes was significantly increased by clorgyline at all time points over the time course of 6 – 96 hr identified by Significance Analysis of Microarrays (SAM). The list is enriched with genes repressed in 7 of 12 oncogenic pathway signatures compiled from the literature. In addition, genes downregulated ≥ 2-fold by clorgyline were significantly enriched with those upregulated by key oncogenes including beta-catenin and ERBB2, indicating an anti-oncogenic effect of clorgyline. Another striking effect of clorgyline was the induction of androgen receptor (AR) and classic AR target genes such as prostate-specific antigen together with other secretory epithelial cell-specific genes, suggesting that clorgyline promotes differentiation of cancer cells. Moreover, clorgyline downregulated EZH2, a critical component of the Polycomb Group (PcG) complex that represses the expression of differentiation-related genes. Indeed, many genes in the PcG repression signature that predicts PCa outcome were upregulated by clorgyline, suggesting that the differentiation-promoting effect of clorgyline may be mediated by its downregulation of EZH2.</p> <p>Conclusion</p> <p>Our results suggest that inhibitors of MAO-A, already in clinical use to treat depression, may have potential application as therapeutic PCa drugs by inhibiting oncogenic pathway activity and promoting differentiation.</p

    Critical Role of the Rb Family in Myoblast Survival and Fusion

    Get PDF
    The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore