16 research outputs found

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    An Exo-Kuiper Belt with An Extended Halo around HD 191089 in Scattered Light

    Get PDF
    International audienceWe have obtained Hubble Space Telescope (HST) STIS and NICMOS, and Gemini/GPI scattered light images of the HD 191089 debris disk. We identify two spatial components: a ring resembling Kuiper Belt in radial extent (FWHM: ∼25 au, centered at ∼46 au), and a halo extending to ∼640 au. We find that the halo is significantly bluer than the ring, consistent with the scenario that the ring serves as the "birth ring" for the smaller dust in the halo. We measure the scattering phase functions in the 30 •-150 • scattering angle range and find the halo dust is both more forward-and backward-scattering than the ring dust. We measure a surface density power law index of −0.68 ± 0.04 for the halo, which indicates the slowdown of the radial outward motion of the dust. Using radiative transfer modeling, we attempt to simultaneously reproduce the (visible) total and (near-infrared) polarized intensity images of the birth ring. Our modeling leads to mutually inconsistent results, indicating that more complex models, such as the inclusion of more realistic aggregate particles, are needed

    Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST /STIS

    No full text
    International audienceWe present new high resolution imaging of a light-scattering dust ring and halo around the young star HD 35841. Using spectroscopic and polarimetric data from the Gemini Planet Imager in H-band (1.6 µm), we detect the highly inclined (i = 85 •) ring of debris down to a projected separation of ∼12 au (∼0. 12) for the first time. Optical imaging from HST /STIS shows a smooth dust halo extending outward from the ring to >140 au (>1.4). We measure the ring's scattering phase function and polarization fraction over scattering angles of 22 •-125 • , showing a preference for forward scattering and a polarization fraction that peaks at ∼30% near the ansae. Modeling of the scattered-light disk indicates that the ring spans radii of ∼60-220 au, has a vertical thickness similar to that of other resolved dust rings, and contains grains as small as 1.5 µm in diameter. These models also suggest the grains have a low porosity, are more likely to consist of carbon than astrosilicates, and contain significant water ice. The halo has a surface brightness profile consistent with that expected from grains pushed by radiation pressure from the main ring onto highly eccentric but still bound orbits. We also briefly investigate arrangements of a possible inner disk component implied by our spectral energy distribution models, and speculate about the limitations of Mie theory for doing detailed analyses of debris disk dust populations

    Imaging the 44 au Kuiper Belt Analog Debris Ring around HD 141569A with GPI Polarimetry

    No full text
    We present the first polarimetric detection of the inner disk component around the pre-main-sequence B9.5 star HD 141569A. Gemini Planet Imager H-band (1.65 mu m) polarimetric differential imaging reveals the highest signal-to-noise ratio detection of this ring yet attained and traces structure inward to 025 (28 au at a distance of 111 pc). The radial polarized intensity image shows the east side of the disk, peaking in intensity at 040 (44 au) and extending out to 09 (100 au). There is a spiral arm-like enhancement to the south, reminiscent of the known spiral structures on the outer rings of the disk. The location of the spiral arm is coincident with (CO)-C-12 J = 3-2 emission detected by ALMA and hints at a dynamically active inner circumstellar region. Our observations also show a portion of the middle dusty ring at similar to 220 au known from previous observations of this system. We fit the polarized H-band emission with a continuum radiative transfer Mie model. Our best-fit model favors an optically thin disk with a minimum dust grain size close to the blowout size for this system, evidence of ongoing dust production in the inner reaches of the disk. The thermal emission from this model accounts for virtually all of the far-infrared and millimeter flux from the entire HD 141569A disk, in agreement with the lack of ALMA continuum and CO emission beyond similar to 100 au. A remaining 8-30 mu m thermal excess a factor of similar to 2 above our model argues for an as-yet-unresolved warm innermost 5-15 au component of the disk.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST

    No full text
    corecore