191 research outputs found
Kinematic analysis of a novel 2-d.o.f. orientation device
This paper presents the development of a new parallel robot designed for helping with bone milling surgeries. The robot is a small modular wrist with 2 active degrees of freedom, and it is proposed to be used as an orientation device located at the end of a robotic arm designed for bone milling processes. A generic kinematic geometry is proposed for this device. This first article shows the developments on the workspace optimization and the analysis of the force field required to complete a reconstruction of the inferior jawbone. The singularities of the mechanism are analyzed, and the actuator selection is justified with the torque requirements and the study of the force space. The results obtained by the simulations allow building a first prototype using linear motors. Bone milling experiment video is shown as additional material
The Spanish Pancreatic Club recommendations for the diagnosis and treatment of chronic pancreatitis: Part 1 (diagnosis)
Chronic pancreatitis (CP) is a relatively uncommon, complex and heterogeneous disease. The absence of
a gold standard applicable to the initial phases of CP makes its early diagnosis difficult. Some of its
complications, particularly chronic pain, can be difficult to manage. There is much variability in the
diagnosis and treatment of CP and its complications amongst centers and professionals. The Spanish
Pancreatic Club has developed a consensus on the management of CP. Two coordinators chose a multidisciplinary
panel of 24 experts on this disease. A list of questions was drafted, and two experts reviewed
each question. Then, a draft was produced and shared with the entire panel of experts and discussed in
a face-to-fac
Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease
In cystic fibrosis (CF) lungs, epithelial Na+ channel (ENaC) hyperactivity causes a reduction in airway surface liquid volume, leading to decreased mucocilliary clearance, chronic bacterial infection, and lung damage. Inhibition of ENaC is an attractive therapeutic option. However, ENaC antagonists have failed clinically because of off-target effects in the kidney. The S18 peptide is a naturally occurring short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived ENaC antagonist that restores airway surface liquid height for up to 24 h in CF human bronchial epithelial cultures. However, its efficacy and safety in vivo are unknown. To interrogate the potential clinical efficacy of S18, we assessed its safety and efficacy using human airway cultures and animal models. S18-mucus interactions were tested using superresolution microscopy, quartz crystal microbalance with dissipation, and confocal microscopy. Human and murine airway cultures were used to measure airway surface liquid height. Off-target effects were assessed in conscious mice and anesthetized rats. Morbidity and mortality were assessed in the β-ENaC-transgenic (Tg) mouse model. Restoration of normal mucus clearance was measured in cystic fibrosis transmembrane conductance regulator inhibitor 172 [CFTR(inh)-172]-challenged sheep. We found that S18 does not interact with mucus and rapidly penetrated dehydrated CF mucus. Compared with amiloride, an early generation ENaC antagonist, S18 displayed a superior ability to slow airway surface liquid absorption, reverse CFTR(inh)-172-induced reduction of mucus transport, and reduce morbidity and mortality in the β-ENaC-Tg mouse, all without inducing any detectable signs of renal toxicity. These data suggest that S18 is the first naturally occurring ENaC antagonist to show improved preclinical efficacy in animal models of CF with no signs of renal toxicity
Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis
Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography–defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared “permanent” because they did not dissolve in dilute BALF matrix, they could be solubi-lized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy
Scent (Apocrine) Gland Adenocarcinoma in a Wedge-Capped Capuchin Monkey (Cebus olivaceus): Histological and Immunohistochemical Features.
In humans, apocrine gland tumours encompass a heterogeneous group of uncommon neoplasms with varied and unpredictable biological behaviour. They can be slow-growing lesions, recur after excision, produce lymph node metastasis in up to 50% of cases or lead to tumour-related death. We document a malignant scent adenocarcinoma in a wedge-capped capuchin monkey (Cebus olivaceus). Immunohistochemical labelling revealed complete absence of myoepithelial cells, a finding usually considered a hallmark of malignancy in humans; however, after a 2-year follow-up, the neoplasm had not recurred. This is the first detailed report of the pathology of a spontaneous scent (apocrine) gland adenocarcinoma in a non-human primate. [Abstract copyright: Copyright © 2020 Elsevier Ltd. All rights reserved.
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
Associations of autozygosity with a broad range of human phenotypes
In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding
- …