163 research outputs found

    The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    Get PDF
    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    Single-shot temporal characterization of XUV pulses with duration from ~10 fs to ~350 fs at FLASH

    Get PDF
    Ultra-short extreme ultraviolet pulses from the free-electron laser FLASH are characterized using terahertz-field driven streaking. Measurements at different ultra-short extreme ultraviolet wavelengths and pulse durations as well as numerical simulations were performed to explore the application range and accuracy of the method. For the simulation of streaking, a standard classical approach is used which is compared to quantum mechanical theory, based on strong field approximation. Various factors limiting the temporal resolution of the presented terahertz streaking setup are investigated and discussed. Special attention is paid to the cases of very short (similar to 10 fs) and long (up to similar to 350 fs) pulses.We want to acknowledge the work of the scientific and technical team at FLASH. NMK acknowledges the hospitality and financial support from DESY and from the theory group in cooperation with the SQS research group of the European XFEL (Hamburg). KW and MD acknowledge support by the SFB925-A1. UF and AD acknowledge support by the excellence cluster `The Hamburg Center for Ultrafast Imaging-Structure, Dynamics and Control of Matter at the Atomic Scale' (DFG)-EXC 1074 project ID 194651731. SW acknowledges support by the DFG Forschergruppe FOR 1789. Editoria

    H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensabe for inducing gene silencing

    Get PDF
    © 2021 EMBO. This is an open access article under the terms of the Creative Commons Attribution License,which permits use, distribution and reproduction in any medium, provided the original work is properly cited.During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.This work was supported by Fundação para a Ciência e Tecnologia (S.T.d.R), project grants PTDC/BIA‐ MOL/29320/2017 IC&DT (A. C. R. & S.T.d.R), CEECUIND/01234/207 (S.T.d.R), and SFRH/BD/137099/2018 (A.C.R.), by an ERC Advanced Investigator award ERC‐ADG‐2014 671027 attributed to E.H., Sir Henry Wellcome Postdoctoral Fellowship (J.J.Z.), Japan Society for the Promotion of Science KAKENHI grants (JP17KK0143 and JP20K06484 to Y.S., JP19H04970, JP19H03158 and JP20H05393 to K.M., JP17K17719 to T.H., JP18H05534 to H.Ku, JP18H05527 and JP20H00456 to Y.O., JP17H01417 and JP18H05527 to H.Ki), and Japan Science and Technology Agency (JST) CREST JPMJCR16G1 to T.K., H.Ku, Y.O. and H.Ki, PREST JPMJPR2026 to K.M., and ERATO JPMJER1901 to H.Ku. J.J.Z. is supported by core funding of The Novo Nordisk Foundation Center for Stem Cell Biology (Novo Nordisk Foundation grant number NNF17CC0027852). Open Access funding enabled and organized by Projekt DEAL.info:eu-repo/semantics/publishedVersio

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope

    Get PDF
    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46 degrees.8 and decl. = -64 degrees.9 and corresponds to a 2.2 sigma background fluctuation. In addition, upper limits on the flux normalization of an E-2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E-2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 x 10(-8) GeV cm(-2) s(-1), depending on the exact location of the source
    corecore