254 research outputs found

    Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii

    Get PDF
    The green alga Chlamydomonas reinhardtii possesses a CO2 concentratingmechanism (CCM) which helps in successful acclimationto low CO2 conditions. Current models of the CCM postulate that aseries of ion transporters bring HCO3- from outside the cell to thethylakoid lumen, where the carbonic anhydrase CAH3 dehydratesaccumulated HCO3- to CO2, raising the CO2 concentration forRubisco. Previously, HCO3- transporters have been identified atboth the plasma membrane and the chloroplast envelope, butthe transporter thought to be on the thylakoid membrane hasnot been identified. Three paralogous genes (BST1, BST2, BST3)belonging to the bestrophin family have been found to be upregulatedin low CO2 conditions, and their expression is controlledby CIA5, a transcription factor that controls many CCM genes.YFP fusions demonstrate that all three proteins are located onthe thylakoid membrane, and interactome studies indicate thatthey might associate with chloroplast CCM components. A singlemutant defective in BST3 still grows nearly normally on low CO2,indicating that the three bestrophin-like proteins may have redundantfunctions. Therefore, an RNAi approach was adopted to reducethe expression of all three genes at once. RNAi mutants withreduced expression of BST1-3 were unable to grow at low CO2concentrations, exhibited a reduced affinity to inorganic carboncompared to the wild type cells, and showed reduced inorganiccarbon uptake. We propose that these bestrophin-like proteins areessential components of the CCM that deliver HCO3- accumulatedin the chloroplast stroma to CAH3 inside the thylakoid lumen

    Abstracts of National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology

    No full text
    This book contains the abstracts of the papers presented at the National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology (NCB4EBT-2021) Organized by the Department of Biotechnology, National Institute of Technology Warangal, India held on 29–30 January 2021. This conference is the first of its kind organized by NIT-W which covered an array of interesting topics in biotechnology. This makes it a bit special as it brings together researchers from different disciplines of biotechnology, which in turn will also open new research and cooperation fields for them. Conference Title: National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental BiotechnologyConference Acronym: NCB4EBT-2021Conference Date: 29–30 January 2021Conference Location: Online (Virtual Mode)Conference Organizer: Department of Biotechnology, National Institute of Technology Warangal, Indi

    Observation of medium-induced yield enhancement and acoplanarity broadening of low-pTp_\mathrm{T} jets from measurements in pp and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) hadron trigger in proton-proton and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,jet<1407 < p_{\rm T,jet} < 140 GeV/c/c and trigger-recoil jet azimuthal separation π/2<Δφ<π\pi/2 < \Delta\varphi < \pi. The measurements exhibit a marked medium-induced jet yield enhancement at low pTp_{\rm T} and at large azimuthal deviation from Δφπ\Delta\varphi\sim\pi. The enhancement is characterized by its dependence on Δφ\Delta\varphi, which has a slope that differs from zero by 4.7σ\sigma. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation
    corecore