3,701 research outputs found
Performance of a First-Level Muon Trigger with High Momentum Resolution Based on the ATLAS MDT Chambers for HL-LHC
Highly selective first-level triggers are essential to exploit the full
physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The
concept for a new muon trigger stage using the precision monitored drift tube
(MDT) chambers to significantly improve the selectivity of the first-level muon
trigger is presented. It is based on fast track reconstruction in all three
layers of the existing MDT chambers, made possible by an extension of the
first-level trigger latency to six microseconds and a new MDT read-out
electronics required for the higher overall trigger rates at the HL-LHC. Data
from -collisions at is used to study the
minimal muon transverse momentum resolution that can be obtained using the MDT
precision chambers, and to estimate the resolution and efficiency of the
MDT-based trigger. A resolution of better than is found in all sectors
under study. With this resolution, a first-level trigger with a threshold of
becomes fully efficient for muons with a transverse momentum
above in the barrel, and above in the
end-cap region.Comment: 6 pages, 11 figures; conference proceedings for IEEE NSS & MIC
conference, San Diego, 201
Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings
Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water+isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters. The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well- flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~1 -2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to >50%), as no particle or agglomerate larger than ~2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surfacechemistry), poor deposition efficiencies and porous layers are obtained. Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~70%) is obtained by suitable mixtures of micron-and nano-sized powders, on account of synergistic effect
Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios
Natural regeneration-based silviculture has been increasingly regarded as a reliable option in sustainable forest
management. However, successful natural regeneration is not always easy to achieve. Recently, new concerns have arisen
because of changing future climate. To date, regeneration models have proved helpful in decision-making concerning natural regeneration. The implementation of such models into optimization routines is a promising approach in providing forest managers with accurate tools for forest planning. In the present study, we present a stochastic multistage regeneration model for Pinus pinea L. managed woodlands in Central Spain, where regeneration has been historically unsuccessful. The model is able to quantify recruitment under different silviculture alternatives and varying climatic scenarios, with further application to
optimize management scheduling. The regeneration process in the species showed high between-year variation, with all
subprocesses (seed production, dispersal, germination, predation, and seedling survival) having the potential to become bottlenecks. However, model simulations demonstrate that current intensive management is responsible for regeneration failure in the long term. Specifically, stand densities at rotation age are too low to guarantee adequate dispersal, the optimal density of seed-producing trees being around 150 stems·ha−1. In addition, rotation length needs to be extended up to 120 years to benefit
from the higher seed production of older trees. Stochastic optimization confirms these results. Regeneration does not appear to worsen under climate change conditions; the species exhibiting resilience worthy of broader consideration in Mediterranean
silviculture
Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter
Showers produced by positive hadrons in the highly granular CALICE
scintillator-steel analogue hadron calorimeter were studied. The experimental
data were collected at CERN and FNAL for single particles with initial momenta
from 10 to 80 GeV/c. The calorimeter response and resolution and spatial
characteristics of shower development for proton- and pion-induced showers for
test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos
corrected, new section added, figures regrouped. Accepted for publication in
JINS
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
A longitudinal twin study of the association between childhood autistic traits and psychotic experiences in adolescence
- Background: This twin study investigated whether autistic traits during childhood were associated with adolescent psychotic experiences.
- Methods: Data were collected from a community sample of approximately 5000 twin pairs, which included 32 individuals with diagnosed autism spectrum conditions (ASC). Parents rated autistic traits in the twins at four points between ages 8–16 years. Positive, negative, and cognitive psychotic experiences were assessed at age 16 years using self- and parent-report scales. Longitudinal twin analyses tested the associations between these measures.
- Results: Autistic traits correlated weakly or nonsignificantly with positive psychotic experiences (paranoia, hallucinations, and grandiosity), and modestly with cognitive psychotic experiences (cognitive disorganisation). Higher correlations were observed for parent-rated negative symptoms and self-reported anhedonia, although the proportion of variance in both accounted for by autistic traits was low (10 and 31 %, respectively). The majority of the genetic influences on negative symptoms and anhedonia were independent of autistic traits. Additionally, individuals with ASC displayed significantly more negative symptoms, anhedonia, and cognitive disorganisation than controls.
- Conclusions: Autistic traits do not appear to be strongly associated with psychotic experiences in adolescence; associations were also largely restricted to negative symptoms. Of note, the degree to which the genetic and environmental causes of autistic traits influenced psychotic experiences was limited. These findings thus support a phenotypic and etiological distinction between autistic traits and psychotic experiences
- …
