151 research outputs found

    Výpočetní metody v jednomolekulové lokalizační mikroskopii

    Get PDF
    Výpočetní metody v jednomolekulové lokalizační mikroskopii Abstrakt Fluorescenční mikroskopie je jedním z hlavních nástrojů biomedicínského výzkumu díky tomu, že se jedná o neinvazivní nedestruktivní a vysoce specifickou zobrazovací metodu. Bohužel optický mikroskop je difrakčně limitovaný systém, což znamená, že nejvyšší dosažitelné rozlišení je přibližně 250 nm laterálně a 500 nm axiálně. Jelikož většina buněčných struktur, o které se výzkumníci zajímají, je menší, zvýšení rozlišovací schopnosti je velice důležité. V posledních letech bylo vyvinuto několik metod, které umožňují zobrazování za hranicí difrakce. Jednou z nich je jednomolekulová lokalizační mikroskopie, která dokáže rozlišit detaily až do 5nm. Tato metoda je však velmi výpočetně náročná. Vývoj metod pro zobrazování a analýzu dat z jednomolekulové lokalizační mikroskopie je předmětem této práce. V lokalizační mikroskopii je obraz se superrozlišením zrekonstruován z dlouhé sekvence kon- venčních obrázků jednotlivých řídce distribuovaných fotoaktivovaných molekul. Ty jsou systematicky lokalizovány se subdifrakční přesností. V této práci jsme navrhli, implementovali a experimen- tálně ověřili sadu metod pro automatické zpracování, analýzu a vizualizaci dat pořízených jed- nomolekulovou lokalizační mikroskopií....Computational methods in single molecule localization microscopy Abstract Fluorescence microscopy is one of the chief tools used in biomedical research as it is a non invasive, non destructive, and highly specific imaging method. Unfortunately, an optical microscope is a diffraction limited system. Maximum achievable spatial resolution is approximately 250 nm laterally and 500 nm axially. Since most of the structures in cells researchers are interested in are smaller than that, increasing resolution is of prime importance. In recent years, several methods for imaging beyond the diffraction barrier have been developed. One of them is single molecule localization microscopy, a powerful method reported to resolve details as small as 5 nm. This approach to fluorescence microscopy is very computationally intensive. Developing methods to analyze single molecule data and to obtain super-resolution images are the topics of this thesis. In localization microscopy, a super-resolution image is reconstructed from a long sequence of conventional images of sparsely distributed single photoswitchable molecules that need to be sys- tematically localized with sub-diffraction precision. We designed, implemented, and experimentally verified a set of methods for automated processing, analysis and visualization of data acquired...Ústav buněčné biologie a patologie 1. LF UKInstitute of Cell Biology and Pathology First Faculty of Medicine Charles UniversityFirst Faculty of Medicine1. lékařská fakult

    Functional blocks for the development of autonomous photovoltaic system

    Get PDF
    Práce se zabývá realizací systému, který umožní testovat vliv šesti různých režimů na životnost akumulátoru. Systém bude spojen s počítačem, který bude provádět měření proudu a napětí a přepínat mezi nabíjecím a vybíjecím režimem. Měřené veličiny se v určitých časových intervalech budou zaznamenávat do paměti počítače. Po určitém čase budou tyto data vyhodnocena a bude stanoven nejvýhodnější provozní režim.The project considers realization system, which will allow us to test six different operation modes on lifetime accumulators. The system will link to computer, which will execute measurement current and tension and switch betwencharging and discharging modes. The measured values will record in someone time intervals in to computer memory. After someone time will analise these measured valuer and will provide optional operation mode.

    Study of optoelectronic and electrooptic properties of organic semiconductors

    Get PDF
    Práce pojednává o experimentálním zkoumání materiálů a uspořádání vrstev, kterými lze tvořit organické fotovoltaické články. Především jsou studovány vlastnosti vrstev na podložkách z PET, které jsou tvořeny tenkou aktivní vrstvou DPP.The thesis deals with the experimental examination of the materials and arrangement of layers, which can form an organic photovoltaic cells. Primarily are studied the properties of layers on PET underlays, which consist of thin active DPP layer.

    Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells

    Get PDF
    Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.Fil: Sampayo, Rocío Guadalupe. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Toscani, Andrés Martin. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rubashkin, Matthew G.. University of California; Estados UnidosFil: Thi, Kate. Lawrence Berkeley National Laboratory; Estados UnidosFil: Masullo, Luciano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Violi, Ianina Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Lakins, Jonathon N.. University of California; Estados UnidosFil: Caceres, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Hines, William C.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Coluccio Leskow, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de Luján; ArgentinaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Chialvo, Dante Renato. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Weaver, Valerie M.. University of California; Estados UnidosFil: Simian, Marina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentin

    Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy

    Get PDF
    We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin

    Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages

    Get PDF
    Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration

    Repurposing a photosynthetic antenna protein as a super-resolution microscopy label

    Get PDF
    Techniques such as Stochastic Optical Reconstruction Microscopy (STORM) and Structured Illumination Microscopy (SIM) have increased the achievable resolution of optical imaging, but few fluorescent proteins are suitable for super-resolution microscopy, particularly in the far-red and near-infrared emission range. Here we demonstrate the applicability of CpcA, a subunit of the photosynthetic antenna complex in cyanobacteria, for STORM and SIM imaging. The periodicity and width of fabricated nanoarrays of CpcA, with a covalently attached phycoerythrobilin (PEB) or phycocyanobilin (PCB) chromophore, matched the lines in reconstructed STORM images. SIM and STORM reconstructions of Escherichia coli cells harbouring CpcA-labelled cytochrome bd 1 ubiquinol oxidase in the cytoplasmic membrane show that CpcA-PEB and CpcA-PCB are suitable for super-resolution imaging in vivo. The stability, ease of production, small size and brightness of CpcA-PEB and CpcA-PCB demonstrate the potential of this largely unexplored protein family as novel probes for super-resolution microscopy

    Molecular coordination of Staphylococcus aureus cell division

    Get PDF
    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogenStaphylococcus aureusis a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components

    Smart-aggregation imaging for single molecule localisation with SPAD cameras

    Get PDF
    Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution toolbox for probing cellular structure and function. The rapid evolution of these techniques has outstripped detector development and faster, more sensitive cameras are required to further improve localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM experiments can be improved significantly by aggregating only frames containing signal, and that this leads to smaller datasets and competitive performance with that of existing detectors. The simulations also indicate that with predicted future advances in SPAD camera technology, SPAD devices will outperform existing scientific cameras when capturing fast temporal dynamics
    corecore