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Abstract The bacterial cell wall is essential for viability, but despite its ability to withstand

internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell

wall structural polymer, whose synthesis requires multiple interacting components. The human

pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes.

Here, we have integrated cellular morphology during division with molecular level resolution

imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the

developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is

matched by variegated division component distribution. Synthesis continues after septal annulus

completion, where the core division component FtsZ remains. The novel molecular level

information requires re-evaluation of the growth and division processes leading to a new

conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not

regularly distributed components.

DOI: https://doi.org/10.7554/eLife.32057.001

Introduction
In order to grow and divide, bacteria must make new cell wall, the major structural component of

which is peptidoglycan (Turner et al., 2014). Bacteria generally have two groups of proteins that co-

ordinate peptidoglycan insertion, one involved with elongation (elongasome), the other with division

(divisome) (Cabeen and Jacobs-Wagner, 2005). S. aureus lacks an apparent elongasome machinery,

but nonetheless new peptidoglycan is inserted all over the cell surface, throughout the cell cycle, not

just during cell division (Monteiro et al., 2015; Zhou et al., 2015). Addition of peptidoglycan, along

with its hydrolysis (Wheeler et al., 2015), is what enables S. aureus cells to get bigger – volume

increases at a constant rate (Zhou et al., 2015).

The S. aureus divisome contains both enzymes that catalyse addition of new monomers to the

peptidoglycan envelope (penicillin-binding proteins, PBPs), and proteins that co-ordinate this activ-

ity. Chief amongst these is FtsZ - an essential protein in almost all bacteria that directs cell division,

which has recently been shown to form dynamic filaments that ‘treadmill’ in Escherichia coli and

Bacillus subtilis, giving a framework to assemble other division proteins resulting in cell wall biosyn-

thesis and septum formation (Yang et al., 2017; Bisson-Filho et al., 2017). FtsZ assembly into the

Z-ring is regulated by other cell division components including EzrA (Levin et al., 1999; Adams and
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Errington, 2009), a membrane protein crucial for cell division in S. aureus (Steele et al., 2011). It

has been shown to interact with both cytoplasmic proteins and those with periplasmic domains and

it is therefore proposed to act as an interface between FtsZ and PBPs forming a scaffold for other

cell division components (Steele et al., 2011).

Previously, FtsZ and EzrA in S. aureus have been imaged using fluorescent fusions (Strauss et al.,

2012; Pereira et al., 2016) and sites of peptidoglycan insertion using fluorescent D-amino acids

(Monteiro et al., 2015; Kuru et al., 2012). Here, we have applied single molecule localisation

microscopy, a technique that provides unprecedented detail compared with other approaches. This

has revealed an unexpected arrangement of division proteins and associated peptidoglycan inser-

tion pattern. This defies the conventional view of division in S. aureus and has prompted a new

model that encompasses the morphological idiosyncrasies of this important pathogen.

Results

Distribution of divisome components during septation
In order to visualise division machines, we localised the cytoplasmic initiator of division FtsZ and the

crucial membrane protein EzrA (Steele et al., 2011). Four fusions of EzrA with different fluorophores

were created. These had wild-type growth rates and the previously observed septal EzrA localization

pattern (Steele et al., 2011; Jorge et al., 2011) by diffraction limited microscopy (Figure 1—figure

supplement 1). Localisation microscopy and 3D structured illumination microscopy (3D-SIM) were

used to address the distribution and juxtaposition of the cell division components at super-

resolution.

3D-SIM revealed that EzrA exhibited punctate distribution at the division site (Figure 1—figure

supplement 2a) (Strauss et al., 2012). Unfortunately, the ‘honeycomb’ artefact (which introduces

foci in images due to incomplete noise filtering [Komis et al., 2015]), visible in our images, could

not be removed by raising the Weiner filter parameter in reconstructions. Thus, localisation micros-

copy was employed as a superior approach.

eYFP was selected as a blinking fluorescent protein tag (Biteen et al., 2008). Multiple 2D images

of septa in the plane of focus were obtained for EzrA-eYFP (Figure 1a), FtsZ-eYFP (Figure 1b) and

EzrA-meYFP (Figure 1—figure supplement 2b). The mean localisation precision of eYFP was calcu-

lated using two different formulae: the ‘Thompson Equation’ (Thompson et al., 2002) by the Thun-

derSTORM ImageJ plugin yielded 24 (s.d. 8.5) nm while a using a modified version of this equation

(Mortensen et al., 2010) yielded 27 (s.d. 8.7) nm. We also measured it experimentally using Nearest

Neighbour in Adjacent Frames (NeNA) analysis (Endesfelder et al., 2014): NeNA analysis deter-

mines localisation precision based on spatial proximity of blinks that occur at similar times and is

part of a family of clustering-based tools for assessing the quality of localisation microscopy data

(Coltharp et al., 2012). This method gave us a mean localization precision of 16.2 nm. Many of the

septa appeared to be somewhat elliptical. This is likely due to the cells being tilted relative to the

plane of focus leading to circular septa appearing elliptical. We therefore fitted ellipses to the septal

localisations and calculated the expected tilt of the cells. The results were that all of the localisations

included in our analysis are within a 400 nm optical section, within a range to ensure good data

(Palayret et al., 2015).

To analyse the distributions and address issues of sampling and resolution in our microscopy, a

number of simple simulations were carried out where representative numbers of localisations were

distributed at random in rings of similar radius to those observed, with a random error applied

(Figure 1c). A circle was fitted to the data points and all the distributions (experimental and simu-

lated) were parameterised with respect to angle and distance from the centre of the circle, generat-

ing histograms of localisations (Figure 1d,e). The autocorrelations of the angular distributions were

then averaged to show that the localisations in the experimental data were neither completely ran-

domly, or regularly, distributed around the ring (Figure 1f). Distributions of distance from the centre

of the circle were compared with simulated distributions of a fixed circle radius where different levels

of localisation precision error were applied (Figure 1g). Even with the most conservative assump-

tions (including simulated localisation precisions worse than we had calculated for our measured

data), the localisations were spread out over a sufficiently wide range of distances to indicate that

both FtsZ or EzrA do not form a very thin ring at the leading edge of the septum in S. aureus.
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Instead both proteins appear in a non-uniform distribution within the septal annulus. Within the

annulus the proteins show no discernible pattern within or across cells. FtsZ distributions were con-

sistent with FtsZ remaining in the division plane after septal fusion were also observed (Figure 2a).

To further investigate whether the apparent elliptical shape of the rings had an influence on our

interpretation, we also analysed the data using an elliptical, rather than a circular fit. Comparing our

results to simulated data (Figure 1—figure supplement 3) corroborated our previous findings.

Figure 1. Distribution of cell division components during septation. (a) Examples of EzrA distributions obtained using localisation microscopy of

SH4388 (ezrA-eyfp DezrA). Scale bars 200 nm. (b) Examples of FtsZ distributions obtained using localisation microscopy of SH4665 (pCQ11-FtsZ-eYFP)

grown with 50 mM IPTG. Scale bars 200 nm. (c) Simulated distributions of localisations randomly distributed by angle with different radii (r), number of

localisations (n) and random error from a normal distribution with standard deviation (s) [i] r = 440 nm, n = 1118, s = 20 nm, [ii] r = 440 nm, n = 1118,

s = 40 nm, [iii] r = 440 nm, n = 1118, s = 80 nm, [iv] r = 440 nm, n = 145, s = 20 nm, [v] r = 440 nm, n = 2010, s = 20 nm. Scale bars 200 nm. (d) An

enlarged example of EzrA-eYFP distribution. Scale bar 200 nm. (e) The distribution from ‘d’ plotted as a scatter graph, and as histograms of number of

localisations with respect to angle and distance from centre. (f) Mean angular autocorrelations of 14 EzrA, 19 FtsZ and 15 simulated distributions.

Autocorrelation drops less quickly for EzrA and FtsZ than for simulations where angle is randomised. This shows that neither EzrA or FtsZ are randomly

distributed by angle. (g) Histograms of localisations with respect to distance from the centre of a fitted circle with varying localisation precision. Data for

EzrA and FtsZ are spread more widely than simulated data with poor localisation precision.

DOI: https://doi.org/10.7554/eLife.32057.002

The following figure supplements are available for figure 1:

Figure supplement 1. EzrA fusions are functional.

DOI: https://doi.org/10.7554/eLife.32057.003

Figure supplement 2. STORM and SIM data.

DOI: https://doi.org/10.7554/eLife.32057.004

Figure supplement 3. Quantitative analysis of EzrA and FtsZ distributions from localisation microscopy data based on elliptical fits.

DOI: https://doi.org/10.7554/eLife.32057.005

Figure supplement 4. Dynamics of EzrA.

DOI: https://doi.org/10.7554/eLife.32057.006
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To place these findings in the context of cell wall shape, two colour localisation microscopy was

performed where the cell wall was labelled with an Alexa Fluor 647 NHS ester (Figure 2b,c), which

labels all amine groups in the cell wall (Zhou et al., 2015). This confirmed that EzrA and FtsZ were

at the expected septal positions in the cell.

To analyse rapid molecular dynamics of EzrA, single-molecule Slimfield microscopy (Plank et al.,

2009) was performed on EzrA-meYFP labelled S. aureus, SH4604 (ezrA-meyfp DezrA) optimized to

enable blur-free tracking of single fluorescent protein fusion constructs in live cells over a millisecond

timescale (Reyes-Lamothe et al., 2010; Badrinarayanan et al., 2012). Analysis of the mobility of

tracked EzrA-meYFP foci enabled quantification of their microdiffusion coefficient (D), indicating a

mixture of three different mobility components: an apparent immobile population in addition to an

intermediate and a rapid mobility population (Figure 1—figure supplement 4a,b). In total, ~600

EzrA foci tracks were analysed in the septum region, whose overall mean D value, which captures

both the immobile and two mobile populations, was 0.20 ± 0.01 mm2 s�1. Whereas, 140 foci tracks

were detected outside the septum region, which showed an increased overall mean D of 0.28 ± 0.03

mm2 s�1. This greater average mobility was principally due to an increase in the proportion of EzrA

foci present in the most mobile component (going from 33 ± 3% of the total to 42 ± 4%).

These relatively slow mobility values for EzrA, compared to many freely diffusing bacterial mem-

brane integrated proteins (Leake et al., 2008), do not preclude putative rotational/treadmilling

motions of EzrA (which have been observed in previous studies of FtsZ mobility in E. coli and B. sub-

tilis [Yang et al., 2017; Bisson-Filho et al., 2017]) over a longer time scale. For example, the mean

speed of putative FtsZ treadmilling estimated from B. subtilis recently (Bisson-Filho et al., 2017) is

only ~30 nm/s, which we estimate would be sufficiently slow to appear predominantly in the immo-

bile component over the typical time scales of our Slimfield tracking experiments here, and so puta-

tive treadmilling of EzrA at this equivalent mean speed, if present in S. aureus, would most likely

appear in this apparent immobile fraction. However, in the three component mobility model, which

fits the observed distribution of D values well, the intermediate mobility fraction has been inter-

preted previously in other cellular systems as indicating transient dynamic interactions (Stracy et al.,

2015), and so we cannot entirely exclude the possibility that this may be due to transient association

of EzrA with FtsZ. Deconvolution analysis (Wollman and Leake, 2015) of whole cell images obtained

using Slimfield microscopy indicated a mean total copy number of 305 ± 23 EzrA molecules per cell

measured across a population (Figure 1—figure supplement 4c). Estimating the proportion of the

most mobile fraction of EzrA foci therefore indicates that at least ~100 EzrA molecules per cell are

not likely to be treadmilling in tight association with FtsZ. In other words, we cannot account for the

observed mobility of EzrA by a simple treadmilling model alone in which all EzrA is tightly associated

with FtsZ, rather the real cellular behaviour is more complex than this.

Figure 2. Relative locations of division components. (a) Localisation microscopy images: of FtsZ-eYFP distributions in bacteria in the late stages of

division. Scale bars 500 nm. Ellipses show approximate cell location and orientation. (b) Dual colour localisation microscopy image of FtsZ-eYFP and the

cell wall (labelled with Alexa Fluor 647 NHS ester, NHS-647). Scale bars 500 nm. (c) Dual colour localisation microscopy image of EzrA-eYFP and the cell

wall (labelled with NHS-647). Scale bars 500 nm.

DOI: https://doi.org/10.7554/eLife.32057.007
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Peptidoglycan synthesis in S. aureus does not occur in discrete foci
We used established metabolic labelling with fluorescent D-amino acids or dipeptides

(Monteiro et al., 2015; Kuru et al., 2012) and adapted this for localisation microscopy to visualise

peptidoglycan insertion with this higher resolution imaging technique. We confirmed that HADA (7-

Figure 3. Peptidoglycan insertion. Localisation microscopy images: (a) 15 s labelling of ADA clicked to Alexa Fluor 647. Scale bars 0.5 mm. (b) 5 min

labelling of (i) ADA clicked to Alexa Fluor 647 and (ii) ADA-DA clicked to Alexa Fluor 647. Scale bars 1 mm. (c) 3D projections of S. aureus labelled for 5

min with ADA clicked to Alexa Fluor 647. (i) Cells with incomplete septum (yellow arrows show gaps in labelling), (ii) cell with annulus complete. Images

in black boxes are z-projections while 3D representations show projections in all three planes. Scale bar 0.5 mm. (d) Cross sections of incomplete septa.

The sketch graph (top row) hypothetically shows labelling exclusively at the leading edge of the septum. This is not the case for the data shown below -

labelling is spread throughout the septum. The full width half maximum spread of labelling is ~230 nm. Data are plotted with blue dots, fits in red lines.

(e) Two colour STORM, sample labelled for 5 min with ADA-DA clicked to Alexa Fluor 647 (yellow) and vancomycin linked to Amersham Cy3B

(magenta). Images are z-projections and in merged images where localisations are in white show labelling by both ADA-DA and vancomycin. Boxed

regions show slot in ADA-DA labelling but not vancomycin. Scale bars 1 mm.

DOI: https://doi.org/10.7554/eLife.32057.008

The following figure supplements are available for figure 3:

Figure supplement 1. Identification of mechanism of DAA labelling in S. aureus.

DOI: https://doi.org/10.7554/eLife.32057.009

Figure supplement 2. 15 s labelling of peptidoglycan insertion with DAAs and controls.

DOI: https://doi.org/10.7554/eLife.32057.010

Figure supplement 3. DAA labelling of PBP4 null S. aureus.

DOI: https://doi.org/10.7554/eLife.32057.011
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hydroxycoumarin-3-carboxylic acid-amino-D-alanine), ADA (azido D-alanine) and ADA-DA (azido-D-

alanyl-D-alanine) mark regions of new peptidoglycan insertion by microscopy and liquid chromatog-

raphy-mass spectrometry (LC-MS) (Figure 3—figure supplement 1).

Cells were pulse labelled with DAAs (D-amino acids) from 15 s to 5 min. Even at the very shortest

labelling time (15 s) peptidoglycan synthesis was observed both at the septum and cell periphery

but without discrete foci (Figure 3—figure supplement 2a,b). Localisation microscopy of 15 s ADA

and ADA-DA labelled cells revealed labelling occurs dispersed across the whole septum as well as

the off-septal cell wall (Figure 3a, Figure 3—figure supplement 2d). This was not due to non-spe-

cific labelling (Figure 3—figure supplement 2c). XY localisation precision (estimated by the Nikon

N-STORM software) was 9.9 (s.d. 3.5) nm or 7.5 nm by NeNA (Endesfelder et al., 2014). A similar

pattern of peptidoglycan synthesis was seen with up to 5 min labelling with ADA or ADA-DA as a

zone across the developing septum as well as throughout the off-septal cell wall (Figure 3b,c,d).

Previously PBP4 has been implicated in the presence of off-septal incorporation (Monteiro et al.,

2015; Gautam et al., 2015), we therefore carried out DAA labelling and localisation microscopy in a

PBP4 null background (SH4425) (Figure 3—figure supplement 3). Cell growth and GlcNAc incorpo-

ration were found to be the same as WT, however DAA labelling was reduced in SH4425 (Figure 3—

figure supplement 3b–d). The proportion of off-septal labelling was calculated in both SH1000 and

SH4425 when labelled with ADA-DA, however no significant difference was observed (Figure 3—fig-

ure supplement 3e). Localisation microscopy of both 15 s and 5 min labelled SH4425 showed pepti-

doglycan synthesis both at the septal and peripheral cell wall. Discrete foci of insertion were not

observed (Figure 3—figure supplement 3f–g). Comparison of autocorrelations (as calculated for

EzrA and FtsZ, using elliptical fits) for SH1000 and SH4425 revealed no substantial differences (Fig-

ure 3—figure supplement 3h).

In cells with an incomplete septum, there was a ‘gap’ in peptidoglycan synthesis at the mother

cell wall-septum interface (Figure 3c–i, arrows). In order to investigate the properties of the

observed ‘gap’ we used a counter stain to determine if it is filled with peptidoglycan. Fluorescent

vancomycin has been used extensively to label peptidoglycan (Daniel and Errington, 2003). Thus,

we synthesised a version of this molecule with a Cy3B fluorophore so it could be used in two colour

localisation microscopy with Alexa Fluor 647 click tagged amino acids. Vancomycin binds D-alanyl-D-

alanine motifs in peptidoglycan and as these are highly prevalent in S. aureus the majority of pepti-

doglycan is fluorescently labelled. Our two colour images show that the ‘gap’ regions that do not

contain ADA-DA (5 min labelling), are nonetheless bound by vancomycin and thus are filled with

peptidoglycan (Figure 3e).

Also, cells with a filled septal annulus showed continued insertion that could be resolved into two

distinct zones, one for each daughter (Figure 3c–ii). These features were not observable by SIM,

being smaller than its theoretical resolution.

Inhibition of cell division leads to co-mislocalization of the cell division
components and peptidoglycan synthesis
The FtsZ inhibitor PC190723 prevents depolymerisation of FtsZ and consequently inhibits cell divi-

sion, also leading to swollen S. aureus cells (Haydon et al., 2008). It has previously been shown by

diffraction limited fluorescence microscopy that PC190723 causes mislocalisations of FtsZ and PBP2

(Tan et al., 2012). We sought to determine the dynamics of this process, and the molecular pattern

of associated peptidoglycan insertion. PC190723 treatment led to delocalization of peptidoglycan

biosynthesis, EzrA and FtsZ even before substantial cell swelling (Figure 4—figure supplement 1).

Incorporation of HADA does not cause mislocalisation of FtsZ or EzrA (data not shown). Peptidogly-

can synthesis was observed around the cell periphery and in distinct foci in the same place as EzrA

and FtsZ. This non-uniform peptidoglycan insertion results in misshapen cells with irregular thicken-

ing of the cell wall (Figure 4a). After 60 min treatment, patches of FtsZ, EzrA and peptidoglycan syn-

thesis can be seen (Figure 4—figure supplement 1a). Localisation microscopy of peptidoglycan

synthesis shows cell shape and the off-septal synthesis with patches of increased synthesis more

clearly (Figure 4b). Thus, peptidoglycan synthesis follows localization of FtsZ and EzrA.
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Morphology of the Staphylococcus aureus septum
It has been shown that the incomplete S. aureus septum is thinner at the leading than at the lagging

edge (Giesbrecht et al., 1998; Matias and Beveridge, 2007). However, the significance of this has

remained unknown. We observed sections of cells from different stages in the cell cycle and mea-

sured septal geometry using thin section Transmission Electron Microscopy (TEM). The septum of S.

aureus is thinner at the leading edge and progressively thicker towards the lagging edge until it

fuses, at which point it is thinner at the centre and progressively thicker towards the lagging edge

until ultimately uniform thickness is established (Figure 5a,b). This dictates that peptidoglycan inser-

tion cannot be confined to the leading edge of the septum and gives a morphological explanation

for the observed peptidoglycan insertion pattern.

The surface area available for peptidoglycan insertion in the nascent septum was modelled result-

ing in the following expression for septal surface area prior to fusion (Figure 5c):

A¼pð2r� sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þ d2
p

Where d is half the thickness of the septum, r is the radius of the cell in the plane of septation

and s is the distance from the leading to the lagging edge of the septum (measured from the inner

surface of the cell wall).

The surface area of a septum with consistently uniform thickness is that of the leading edge of

that septum:

A¼ 4pðr� sÞd

Not only is the available surface area always larger for the morphology we observe, but it

increases as the septum closes (whereas with a uniformly thick septum, it decreases). This provides a

Figure 4. Effect of FtsZ inhibitor PC190723 on S. aureus. (a) TEM of S. aureus SH1000 grown in the presence of PC190723 (10 mg ml�1) for 60 min. Scale

bars 200 nm. (b) STORM image of S. aureus SH1000 pre-treated with PC190723 (10 mg ml�1) for 60 min labelled with ADA clicked to Alexa Fluor 647 for

5 min. Scale bar 1 mm. (i) and (ii) zoomed images of the corresponding area, scale bars 0.25 mm.

DOI: https://doi.org/10.7554/eLife.32057.012

The following figure supplement is available for figure 4:

Figure supplement 1. Effect of FtsZ inhibitor PC190723 on S. aureus.

DOI: https://doi.org/10.7554/eLife.32057.013
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framework for septal synthesis in an organism in which the septum comprises a substantial propor-

tion of the cell wall.

Figure 5. Conceptual model of peptidoglycan insertion during the S. aureus cell cycle. (a) Schematic of measurement used in (b) measurement of the

angle (q) between a line parallel to the surface of the septum (yellow) and a tangent to the surface of the bacterium in incomplete (blue) and complete

(red) septa. (c) Surfaces available for peptidoglycan insertion for different septal geometries where d is half the thickness of the septum, r is the cell

radius in the septal plane and s is the distance from the leading to the lagging edge of the septum (measured from the inner surface of the cell wall).

(d) Conceptual model of peptidoglycan insertion in S. aureus. (i, ii) Cell size increases and aspect ratio changes prior to observation of the start of

septum formation by 3D-SIM (Monteiro et al., 2015). (iii) The septum then starts to form, beginning with the ‘piecrust’ feature (red) observed by AFM

(Turner et al., 2010). The septum is thinner at the leading edge (Matias and Beveridge, 2007). (iv) New peptidoglycan is inserted in a zone at the

leading edge of the septum, as well as across the rest of the cell surface as visualised here by localisation microscopy. (v, vi) After the annulus has fused,

peptidoglycan insertion continues in the septum, executed by cell division components, until it is of uniform thickness. (vii) ATL (a peptidoglycan

hydrolase) is present at the outer surface of the cell in the plane of septation(Komatsuzawa et al., 1997). Cracks or splits begin to form at the outer

surface in the plane of septation(Touhami et al., 2004), followed by rapid popping apart of the daughter cells (Zhou et al., 2015). (vii) ‘Scars’ or ‘ribs’

remain marking the site of division (Monteiro et al., 2015; Turner et al., 2010) and may provide spatial cues to subsequently enable correct

sequentially orthogonal divisions.

DOI: https://doi.org/10.7554/eLife.32057.014
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Discussion
The non-standard cross section of the septum in S. aureus distinguishes it from other model organ-

isms (Figure 5a,b,c) and indicates that not all peptidoglycan insertion occurs at the leading edge of

the septum in this species prompting the development of a new model for how peptidoglycan is

synthesised during the cell cycle (Figure 5d). This is likely advantageous to the bacteria, enabling

more biosynthetic enzymes to work on the cell wall without steric hindrance. We sought to explain

this phenomenon by analysing the distribution of peptidoglycan insertion and investigating key cell

division components. Our novel application of localisation microscopy to DAAs revealed that even

at the shortest timescales and with considerably more precision than previous studies

(Monteiro et al., 2015; Zhou et al., 2015; Turner et al., 2010), there were no foci of peptidoglycan

insertion – the diffuse pattern throughout the septum and periphery of the cell was ever-present.

This surprising finding was corroborated by the distribution of core cell division components in S.

aureus. Localisation microscopy of FtsZ and EzrA in the septal ring showed, like the distribution of

peptidoglycan insertion, that they occurred in a zone, and were not limited to the leading edge of

the septum. Also, FtsZ remained at the septum after the annulus had fused. When FtsZ depolymer-

isation was inhibited, peptidoglycan insertion was found to occur in areas with large amounts of

FtsZ, resulting in local thickening of the cell wall, suggesting all synthesis may depend on FtsZ. This

is a different scenario to E. coli and B. subtilis, where division-associated foci of peptidoglycan syn-

thesis have been identified (albeit without the precision of localisation microscopy) and associated

with cell division components driven by treadmilling FtsZ filaments (Yang et al., 2017; Bisson-

Filho et al., 2017).

The divisome has been proposed to be a multi-component machine, present within a ring, based

on diffraction-limited microscopy and interaction studies (Steele et al., 2011; Bottomley et al.,

2014). Previous localisation microscopy studies have begun to reveal intricate structural and spatial

relationships between division components (Holden et al., 2014; Buss et al., 2015; Jacq et al.,

2015).

Our data show that divisome components are not placed exclusively at the leading edge of the

septum, and that some individual proteins move more rapidly than others. There may, therefore, be

a number of essentially identical machines executing peptidoglycan insertion within a region of the

septum, with exchange of machine components with a more mobile population of molecules. It

could also be the case that the machines are very non-uniform and can execute their tasks with a

subset of the complete list of divisome proteins and with more or less of an individual protein. Alter-

natively, stable, stoichiometric complexes are not present and the interactions between proteins

required to make new peptidoglycan are highly transient.

Materials and methods

Bacterial growth conditions
Strains used in this study are listed in Appendix 1—table 1, while plasmids and oligonucleotide

sequences are shown in Appendix 1—table 2 and Appendix 1—table 3. S. aureus was grown in

Brain Heart Infusion (BHI) broth at 37˚C with aeration at 250 rpm, except for Slimfield microscopy

and14C-GlcNAc incorporation experiments (and associated growth curves) which were carried out

using Chemically Defined Media (CDM) (Hussain et al., 1991). For solid media 1.5% (w/v) agar was

added. Where required, antibiotics were added at the following concentrations; erythromycin (5 mg

ml�1), lincomycin (25 mg ml�1), kanamycin (50 mg ml�1), and tetracycline (5 mg ml�1). To induce pro-

tein production strains carrying gene fusions under the control of the Pspac promoter were grown in

the presence of 50 mM isopropyl b-D-thiogalactopyranoside (IPTG).

Construction of S. aureus mutants
All vectors were constructed in E. coli NEB5a (New England Biolabs) following previously described

methods (Sambrook and Russell, 2001; Gibson et al., 2009). The resulting constructs were passed

through a restriction-deficient S. aureus RN4220 before being transduced into a final S. aureus

SH1000 strain. Transformation and phage transduction of S. aureus were carried out as described

previously (Schenk and Laddaga, 1992; Novick and Morse, 1967).
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SH4388 (ezrA-eyfp DezrA): The EzrA-eYFP fusion was created by AscI and NotI digestion of

pGM074 and insertion of eyfp amplified by PCR from SU492 (Monahan et al., 2014) using primer

pair eYFP-F and eYFP-R. pGM074 is pKASBAR-kan (Bottomley et al., 2014) containing ezrA under

the control of its own promoter with the C-terminal psmorange (flanked by AscI and NotI restriction

sites). In the resulting plasmid pKASBAR-EzrA-eYFP the translational fusion of ezrA-eyfp is linked by

linker A (see below). pKASBAR-EzrA-eYFP was electroporated into CYL316 (Lee et al., 1991) and its

integration at the geh locus was confirmed by disruption of lipase production on Baird-Parker

medium. The chromosomal fragment containing the integrated plasmid was moved into S. aureus

SH1000 by phage transduction, creating SH4384 (ezrA-eyfp).

To delete native ezrA, an ezrA deletion vector was constructed. Fragments encompassing ~1.5

kb regions flanking ezrA were PCR amplified from S. aureus SH1000 genomic DNA using pOB-ezrA-

up-F/-R and pOB-ezrA-down-F/-R. A 2.1 kb fragment encoding a tetracycline resistance cassette

(tetR) was amplified from pAISH by PCR using pOB-TetR-F/-R primers. The three PCR products were

ligated with HindIII and EcoRI cut pOB (Horsburgh et al., 2002a) by Gibson assembly, creating a

deletion vector pOB-DezrA. The plasmid pOB-DezrA was electroporated into RN4220. The plasmid

integrated into the chromosome through a single cross-over event and the DNA fragment contain-

ing the deletion cassette was transduced into SH4386 (ezrA-eyfp). Tetracycline-resistant/erythromy-

cin-sensitive colonies were selected. In the resulting strain, SH4388 (ezrA-eyfp DezrA), ezrA-eyfp was

the only copy of the ezrA gene. Replacement of ezrA for tetR was confirmed by PCR and Southern

blot.

SH4640 (ezrA-gfp DezrA): To construct an EzrA-GFP translational fusion linked by linker A, gfp

was PCR amplified from JGL227 (Steele et al., 2011) using GFP-F/-R primers and ligated into AscI

and EcoRI cut pGM074, creating pKASBAR-EzrA-GFP. The resulting plasmid was electroporated

into CYL316. pKASBAR-EzrA-GFP integration at the geh locus was confirmed by disruption of lipase

production on Baird-Parker medium. The chromosomal region containing the plasmid integrated

within geh was moved to SH1000 creating SH4639 (ezrA-gfp). To delete native ezrA, SH4639 was

transduced with a phage lysate from SH4388 (ezrA-eyfp DezrA), creating SH4640 (ezrA-gfp DezrA).

Replacement of ezrA for TetR was confirmed by PCR and Southern blot.

SH4642 (ezrA-snap DezrA): A translational fusion of EzrA linked by linker A to the SNAP tag was

constructed by PCR amplification of snap from pSNAP-tag (T7)�2 (New England Biolabs) using

SNAP-F/-R primers. The PCR product was ligated into pGM074 using AscI and NotI cut sites to cre-

ate pKASBAR-EzrA-SNAP. The resulting plasmid was electroporated into CYL316, and its integration

at the geh locus was confirmed by disruption of lipase production on Baird-Parker medium. The

chromosomal fragment containing integrated pKASBAR-EzrA-SNAP was transduced into SH1000,

resulting in SH4641 (ezrA-snap). Native ezrA was replaced by tetR by transducing SH4641 with the

phage lysate from SH4388 (ezrA-eyfp DezrA), creating SH4642 (ezrA-snap DezrA). Replacement of

ezrA for tetR was confirmed by PCR and Southern blot.

SH4604 (ezrA-meyfp DezrA): To create a C-terminal fusion of EzrA with monomeric eYFP (meYFP)

the whole pKASBAR-EzrA-eYFP plasmid was PCR amplified using meYFP-F/-R primers. The meYFP-F

primer introduced an A206K substitution (Zacharias et al., 2002) into the eyfp gene. The PCR prod-

uct was digested with DpnI to remove methylated DNA, the 5’ ends of DNA were phosphorylated

with T4 polynucleotide kinase (New England Biolabs) and DNA was circularized using Quick-Stick

ligase (Bioline), resulting in pKASBAR-EzrA-meYFP. The resulting plasmid was electroporated into

CYL316. The chromosomal fragment containing the integrated plasmid in the geh locus was moved

into S. aureus SH1000 by phage transduction, creating SH4603 (ezrA-meyfp), To delete native ezrA,

SH4603 was transduced with a phage lysate from SH4388 (ezrA-eyfp DezrA), creating SH4604 (ezrA-

meyfp DezrA). Replacement of ezrA for tetR was confirmed by PCR and Southern blot.

SH4652 (ezrA-eyfp DezrA pCQ11-FtsZ-SNAP): In order to construct a strain simultaneously pro-

ducing EzrA-eYFP and FtsZ-SNAP, a plasmid encoding a translational ftsZ-snap fusion placed under

the control of the Pspac promoter was constructed. The ftsZ gene was PCR amplified from S. aureus

N315 genomic DNA using FGFtsZXhoI-F and FGFtsZEcoRI-R primers and cloned into EcoRI and

XhoI cut pSS26b (Covalys), resulting in pSS26bFtsZ-C. The fragment encoding ftsZ-snap was PCR

amplified from pSS26bFtsZ-C using FGFtsZNheI-F and FGFtsZAscI-R and inserted into pCQ11

(Hardt et al., 2017) using NheI and AscI cut sites, creating pCQ11-FtsZ-SNAP. The plasmid was

electroporated into RN4220 and moved to SH4388 (ezrA-eyfp DezrA) by phage transduction, result-

ing in SH4652 (ezrA-eyfp DezrA pCQ11-FtsZ-SNAP).
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SH4665 (pCQ11-FtsZ-eYFP): To construct a translational fusion of FtsZ with eYFP, an insert con-

taining a fragment of linker B (see below) followed by a full length eyfp gene was synthesized by the

GeneArt Gene Synthesis service, PCR amplified using ftsZ-eyfp-F/-R primers and cloned into NcoI

and AscI cut pCQ11-FtsZ-SNAP, creating pCQ11-FtsZ-eYFP. The plasmid was electroporated to

RN4220 and moved to SH1000 by phage transduction, resulting in SH4665 (pCQ11-FtsZ-eYFP).

SH4425 (pbp4): NE679 (pbp4) containing a transposon insertion within the pbp4 gene was

obtained from NARSA library (Fey et al., 2013). SH1000 was transduced with a phage lysate from

NE679. Insertion of the transposon within pbp4 in resulting SH4425 (pbp4) was confirmed by PCR

and sequencing.

Sequences of genes encoding fluorescent proteins, tags and linkers
eyfp in pKASBAR-EzrA-eYFP
ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGC

TGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACC

TACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCC

TCGTGACCACCTTCGGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAG-

CACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAG-

GACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGG

TGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGC

TGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCA

TCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGGCGGCAGCGTGCAGCTCGCCGACCAC

TACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGC

TACCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCG

TGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAG

eyfp in pCQ11-FtsZ-eYFP
ATGGTTTCAAAAGGTGAAGAATTATTCACAGGTGTTGTTCCAATTTTGGTTGAATTAGATGGTGA

TGTTAATGGTCATAAATTCTCAGTTTCAGGTGAAGGTGAAGGTGATGCAACATATGGTAAA

TTAACATTAAAATTTATTTGTACAACAGGTAAATTACCAGTTCCTTGGCCAACATTAGTTACAACA

TTCGGTTATGGTTTACAATGTTTTGCACGTTATCCAGATCATATGAAACAACATGATTTTTTCAAA

TCAGCAATGCCTGAAGGTTATGTTCAAGAACGTACAATTTTCTTTAAAGATGATGGTAATTA-

CAAAACACGTGCTGAAGTGAAATTTGAAGGTGATACATTAGTTAATCGTATTGAATTAAAAGGTA

TTGATTTTAAAGAAGATGGAAATATTTTAGGTCATAAATTAGAATATAATTATAATTCACATAATG

TTTATATTATGGCAGATAAACAAAAAAATGGTATTAAAGTTAATTTCAAAATTCGTCATAATA

TTGAAGGTGGTTCAGTTCAATTAGCAGATCATTATCAACAAAATACACCTATTGGTGATGGTCCAG

TTTTATTACCAGATAATCATTATTTATCATATCAATCAGCATTATCAAAAGATCCAAATGAAAAACG

TGATCATATGGTTTTATTAGAATTTGTTACAGCAGCAGGTATTACATTAGGTATGGATGAATTATA

TAAATAA

gfp in pKASBAR-EzrA-GFP
ATGGCTAGCAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGA

TGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCTACATACGGAAAGC

TTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTAC

TTTGACCTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAA-

GAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAAC

TACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGG

TATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAGTACAACTATAACTCACACAA

TGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCAAAATTCGCCACAACA

TTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCC

TGTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAAC-

GAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGA

TGAGCTCTACAAATAA
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snap in pSNAP-tag (T7)�2 and pKASBAR-EzrA-SNAP
ATGGACAAAGACTGCGAAATGAAGCGCACCACCCTGGATAGCCCTCTGGGCAAGCTGGAACTG

TCTGGGTGCGAACAGGGCCTGCACCGTATCATCTTCCTGGGCAAAGGAACATC

TGCCGCCGACGCCGTGGAAGTGCCTGCCCCAGCCGCCGTGCTGGGCGGACCAGAGCCACTGA

TGCAGGCCACCGCCTGGCTCAACGCCTACTTTCACCAGCCTGAGGCCATCGAGGAGTTCCCTG

TGCCAGCCCTGCACCACCCAGTGTTCCAGCAGGAGAGCTTTACCCGCCAGGTGCTGTGGAAAC

TGCTGAAAGTGGTGAAGTTCGGAGAGGTCATCAGCTACAGCCACCTGGCCGCCC

TGGCCGGCAATCCCGCCGCCACCGCCGCCGTGAAAACCGCCCTGAGCGGAAATCCCGTGCCCA

TTCTGATCCCCTGCCACCGGGTGGTGCAGGGCGACCTGGACGTGGGGGGCTACGAGGGCGGGC

TCGCCGTGAAAGAGTGGCTGCTGGCCCACGAGGGCCACAGACTGGGCAAGCCTGGGCTGGGT

snap in pSS26b, pSS26bFtsZ-C and pCQ11-FtsZ-SNAP
ATGGACAAAGATTGCGAAATGAAACGTACCACCCTGGATAGCCCGCTGGGCAAACTGGAAC

TGAGCGGCTGCGAACAGGGCCTGCATGAAATTAAACTGCTGGGTAAAGGCAC-

CAGCGCGGCCGATGCGGTTGAAGTTCCGGCCCCGGCCGCCGTGCTGGGTGGTCCGGAACCGC

TGATGCAGGCGACCGCGTGGCTGAACGCGTATTTTCATCAGCCGGAAGCGATTGAAGAA

TTTCCGGTTCCGGCGCTGCATCATCCGGTGTTTCAGCAGGAGAGCTTTACCCGTCAGGTGCTG

TGGAAACTGCTGAAAGTGGTTAAATTTGGCGAAGTGATTAGCTATCAGCAGCTGGCGGCCC

TGGCGGGTAATCCGGCGGCCACCGCCGCCGTTAAAACCGCGCTGAGCGGTAACCCGGTGCCGA

TTCTGATTCCGTGCCATCGTGTGGTTAGCTCTAGCGGTGCGGTTGGCGGTTATGAAGGTGGTC

TGGCGGTGAAAGAGTGGCTGCTGGCCCATGAAGGTCATCGTCTGGGTAAACCGGGTCTGGGA

TGA

Linker A
TCAGGTTCAGGTTCAGGTGGGCGCGCCTCAGGTTCAGGTTCAGGT

Linker B
GAATTCCCCATGGGTTCAGGTGGTGGTGGTTCA

Labelling S. aureus with DAAs
DAAs were prepared by published methods (Adams and Errington, 2009; Steele et al., 2011;

Strauss et al., 2012) or by modified procedures described in Appendix. ADA was obtained from Iris

Biotech. These were incubated with mid-exponential phase (OD600 ~0.3 to 0.4) S. aureus at 500 mM

(1 mM for ADA-DA) and incubated on a rotary shaker at 37˚C for the required labelling time. Sam-

ples were imaged using widefield microscopy, 3D-SIM or localisation microscopy as required. For 15

s labelling DAAs were used at 10 mM, 1 ml samples were mixed briefly by vortexing and fixed by

addition of 500 ml 8% (w/v) ice-cold paraformaldehyde immediately after vortexing.

Click chemistry
DAAs containing an azide functional group (ADA and ADA-DA) required chemical attachment of a

fluorophore via the Click reaction (copper (I)-catalysed alkyne-azide cycloaddition). This was carried

out using the Click-iT Cell Reaction Buffer Kit (ThermoFisher) as per the manufacturer’s protocol.

Alkyne dyes were added at 5 mg ml�1.

Labelling S. aureus with fluorescent vancomycin
Fixed cells were resuspended in PBS containing fluorescent vancomycin at 2 mM (prepared using suc-

cinimidyl ester of Amersham Cy3B (GE Healthcare) as previously described (Daniel and Errington,

2003). Samples were protected from light and incubated at room temperature for 30 min then

washed by centrifugation and resuspension in water. For dual labelled samples, cells were labelled

with required DAA as described above and fixed with 4% (w/v) paraformaldehyde prior to labelling

with fluorescent vancomycin.
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Labelling S. aureus with NHS ester
S. aureus grown to mid-exponential phase (OD600 ~0.5) were resuspended in PBS containing Alexa

Fluor 647 NHS ester (Invitrogen) at 8 mg ml�1 and incubated at room temperature for 5 min. Cells

were then washed by centrifugation and resuspension in PBS.

Labelling S. aureus with SNAP-Cell TMR-Star
S. aureus grown to mid-exponential phase (OD600 ~0.5) were incubated with SNAP-Cell TMR-Star

(New England Biolabs) at 500 nM for widefield microscopy or 3 mM for SIM at 37˚C for 15 min. Cells

were washed by centrifugation and resuspension in PBS.

Fixing
With the exception of Slimfield microscopy which involved no fixation and 15 s DAA labelling which

used 8% (w/v) ice-cold paraformaldehyde, all samples were fixed with 4% (w/v) paraformaldehyde

prior to imaging.

Widefield epifluorescence microscopy
Fixed cells were mounted on poly-L-Lysine coated slides and imaged on a Nikon Ti Inverted micro-

scope fitted with a Lumencor Spectra X light engine. Images were taken using a 100x PlanApo (1.4

NA) oil objective using 1.518 RI oil and detected by an Andor Zyla sCMOS camera.

OMX microscopy
Coverslips (High-precision, No.1.5H, 22 � 22 mm, 170 ± 5 mm, Marienfeld) were sonicated for 15

min in 1 M KOH, washed with water and incubated in poly-L-Lysine solution for 30 min. Coverslips

were then further washed and dried with nitrogen. Fixed cells were then dried onto the coverslips

with nitrogen and mounted on slides with ~5 ml Slow Fade Diamond (Invitrogen).

Structured Illumination Microscopy was carried out using a v4 DeltaVision OMX 3D-SIM system

fitted with a Blaze module (Applied Precision, GE Healthcare, Issaquah, USA). Samples were illumi-

nated using laser illumination. For each z slice, samples were imaged in five phase shifts and three

angles, z-steps were 0.125 nm. Reconstructions were performed with the Softworx software (GE

Healthcare) using OTFs optimised for the specific wavelength and oil used. The same software was

used for deconvolution.

Sample preparation for localisation microscopy
For all samples coverslips were prepared as for 3D-SIM Microscopy. All samples except for eYFP/

meYFP and were mounted on slides with 5 ml GLOX buffer (0.5 mg ml�1 glucose oxidase, 40 mg

ml�1 catalase, 10% (w/v) glucose in 50 mM Tris-HCl containing 10 mM NaCl (pH 8.0) containing

either 10 or 100 mM mercaptoethylamine (MEA).

For eYFP/meYFP imaging (single colour) samples were mounted in 5 ml PLOX buffer (5 U ml�1

pyranose oxidase, 40 mg ml�1 catalase, 10% (w/v) glucose in 50 mM Tris-HCl, 10 mM NaCl (pH 8.0)

prepared in heavy water (Ong et al., 2015).

For eYFP/Alexa Fluor 647 imaging (two-colour) samples were mounted in 5 ml PLOX containing

50 mM MEA. Where required, coverslips were sparsely coated with TetraSpeck beads (0.1 mm,

Molecular Probes) prior to the application of cells.

Bespoke localisation microscope
Localisation microscopy was carried out as previously described (Huang et al., 2010; Turner et al.,

2013), but using OBIS 405 (50 mW) and OBIS 647 (120 mW) lasers, a 662 nm dichroic and a 676

(Daniel and Errington, 2003) nm emission filter. Calibration data for 3D reconstructions was

obtained by recording images of fiducial particles while stepping the objective piezo.

Nikon N-STORM localisation microscope
Localisation microscopy was carried out using a Nikon Ti-NS N-STORM version 1 with 3D capability

in continuous mode. Objective used was a SR Apo TIRF 100x NA 1.49 and images detected using

EMCCD camera (Andor DU-897) using the 17 MHz 16 bit mode with an EM Multiplier Gain of 300

and a conversion gain of 3. Calibration data for 3D reconstructions was obtained by recording
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images of fiducial particles using the calibration mode. Custom-made filter cubes were used for

eYFP/meYFP (no excitation filter, 488 nm dichroic, 525/50 nm emission) and two-colour imaging

(red/far red; no excitation filter, multi-band dichroic with transmission at 410–480 nm, 500–550 nm,

570–630 nm and above 650 nm, multi-band emission with transmission at 570–620 nm and above

660 nm) imaging and the N-STORM cube for single colour Alexa Fluor 647 imaging. Imaging was

done under oblique illumination but not full TIRF. Two colour eYFP and Alexa Fluor 647 imaging was

performed using separate filter cubes whereas two colour imaging using Cy3B and Alexa Fluor 647

was performed using a single cube, as specified.

Image reconstruction
Images were reconstructed as previously described (Huang et al., 2008) using either custom Matlab

scripts (available at this reference [Turner and Foster, 2018]), the ThunderSTORM ImageJ/Fiji plugin

(Ovesný et al., 2014) or Nikon elements software. All of these methods identify the locations of

molecules by fitting Gaussian functions to regions of source data, and all yielded similar results.

Two colour data (where using a single multi-band filter cube) was reconstructed and aligned (reg-

istered) using Nikon elements. In summary, alignment is achieved by obtaining calibration images of

the same fluorescent beads in both channels. The software then determines the way in which local-

isations in one channel must be offset to align with the other, based on the offsets in the apparent

positions of the beads.

For two colour eYFP/Alexa Fluor 647 NHS ester imaging, using two filter cubes, the average posi-

tion of a TetraSpeck fiducial was determined in both channels and a translational offset calculated

for each image. This was applied to the Alexa Fluor 647 channel to approximately align the data.

Whilst more sophisticated co-alignment methods exist, this was sufficient for us to draw the qualita-

tive conclusions necessary for this part of our study.

Image rendering
Images were rendered as 2D histograms using the ThunderSTORM ImageJ/Fiji plugin

(Ovesný et al., 2014). Unless otherwise stated images were projected onto a single plane and the

reconstructed pixel size was 10 nm. Semi-quantitative Matlab contour plots were used in some

instances for ease of visualisation of key features in 3D reconstructions both on screen and in print.

eYFP and eYFP/Alexa Fluor 647 NHS ester dual colour images were reconstructed with a pixel size

of 5 nm with a Gaussian blur of 20 nm applied to make them easier to see.

Analysis of localisation microscopy data
Ring-like groups of localisations were manually selected from fields. The centre and radius of a circle

that best fit the points was then determined allowing the localisations to be represented using polar

co-ordinates. Histograms of localisations with respect to angle (2˚ bin size) and distance from the

centre of the circle (10 nm bin size) were then generated. The angular histograms were auto-corre-

lated to test for the presence of similarly sized large groups of molecules which would create peaks

or a very slow decay from 0˚ in the resulting graph. The distance histograms were plotted and com-

pared with those resulting from simulations.

An additional, similar, analysis was carried modelling the septal shape as an ellipse (Figure 1—fig-

ure supplement 3).

Simulation of localisation microscopy data
We used the simplest possible methods to simulate data to compare with that acquired on the

microscope. Localisations were randomly distributed by angle on circles of a fixed radius. Localisa-

tion error comes from several physical sources, but was simulated by adding offsets in x and y taken

independently and at random from a normal distribution of a defined standard deviation.

Slimfield microscopy: Microscope setup
A bespoke single-molecule microscope was used, constructed around the body of a Zeiss inverted

microscope with a 100 � 1.49 numerical aperture oil immersion total internal reflection fluorescence

(TIRF) objective lens (Olympus) and an xyz nano positioning stage (Nanodrive, Mad City Labs). A 20

mW Obis 514 nm laser expanded to 10 mm full width at half maximum was used to excite meYFP
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fluorescence combined with a dual pass CFP/YFP dichroic mirror with 20 nm transmission windows

centred on 440 nm and 514 nm. A high-speed camera (Andor iXon DV860-BI) was used to image at

5 ms/frame with magnification at 50 nm/pixel. Data were acquired using custom LabView software.

Slimfield microscopy: Sample preparation and imaging
S. aureus SH4604 (ezrA-meyfp DezrA) cells were imaged by immobilising them on an agarose pad

suffused with media. These were constructed by placing a gene frame (Life Technologies) on a BK7

glass microscope slide (Fisher) and filling with ~500 ml 1% (w/v) agarose containing media. Once set,

5 ml of cell culture was spotted over the agarose and covered with a plasma cleaned coverslip.

Slimfield microscopy: Image analysis
Cell bodies and apparent EzrA rings were segmented as outlined previously (Wollman et al., 2016).

In brief, the cell body was found by segmenting both a five frame average EzrA-meYFP fluorescence

and brightfield image using a threshold set by the background peak in the pixel intensity distribu-

tion. The brightfield segmentation was used as seeds for watershedding the segmented fluores-

cence image to identify individual cells. Further thresholding within cell pixels yields a mask for the

EzrA ring.

Diffraction-limited fluorescent foci were tracked using custom Matlab software as described previ-

ously (Wollman et al., 2015). In brief, in each frame, candidate foci are identified by thresholding

top-hat transformed images using Otsu’s method. The spot centre is determined to sub-pixel preci-

sion using iterative Gaussian masking (Leake et al., 2006) and accepted if its signal-to-noise ratio, as

defined by the foci intensity, the background-corrected integrated pixel intensity within a five pixel

radius circular region of interest centred of the foci intensity centroid, divided by the standard devia-

tion of the background pixels, is greater than 0.4. Foci are linked into the same track between image

frames if they are within a distance of 1 optical resolution width (approximately five pixels), generat-

ing single particle tracks to a typical localization precision of ~40 nm (Llorente-Garcia et al., 2014).

The mean squared displacement of each track over its first four time interval points was used to

calculate its microdiffusion coefficient, D, using a linear fit (Kusumi et al., 1993). These were binned

into 0.01 mm2 s�1 bins and fitted with 1–3 gamma functions (Stracy et al., 2015), with three gammas

generating the lowest reduced chi2.

Copy number values were calculated using a deconvolution method called CoPro (Wollman and

Leake, 2015) which utilised the symmetrical geometry of S. aureus cells and the in vivo characteristic

intensity of single meYFP molecules (Leake, 2014). Detection of single meYFP was confirmed by

observation of single, distinct photobleach steps. This characteristic brightness value corresponding

to a single meYFP molecule was determined as the peak of the intensity distribution of fluorescent

foci found after 200 ms of photobleaching, and was equivalent to 2000 ± 500 counts on our EMCCD

camera detector.

Transmission electron microscopy
Samples were prepared for electron microscopy as previously described (Bottomley et al., 2014).

Cell volume calculation
Cell volume calculations were carried out as previously described (Zhou et al., 2015), specifically,

the long and short axis of cells were measured using Fiji. The volume was then calculated based on a

prolate spheroid shape with volume V ¼ 4

3
pab

2, where a and b are the dimensions of the long and

short axis respectively.

Gel-based analysis of SNAP tagged proteins
SNAP-Cell TMR-Star (New England Biolabs) was added to a 1 ml aliquot of mid-exponential phase

(OD600 ~1) grown culture at a concentration of 500 nM and incubated at 37˚C for 1 hr. Cells were

washed three times by resuspension and centrifugation in PBS, resuspended in PBS supplemented

with 200 mg ml�1 lysostaphin and 20 U ml�1 DNase I and lysed at 37˚C for 30 min. Cell extracts were

resolved in SDS-PAGE, the gel was rinsed with dH2O and scanned using ChemiDoc MP System (Bio-

Rad).
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Incorporation of 14C-GlcNAc into cell wall peptidoglycan
S. aureus strains were grown overnight in CDM and used to inoculate fresh CDM to an OD600 of

0.05 and grown to OD600 ~ 0.2. At this point 5 mM 14C-GlcNAc was added to cultures. At 30 min

intervals samples were collected and prepared for analysis of 14C-GlcNAc incorporation via Liquid

Scintillation as previously described (Maki et al., 2001).

Fluorescence intensity measurements
Fluorescence intensity was measured using Image J/Fiji and calculated as counts/pixel. To determine

the % off-septal fluorescence the fluorescence intensity for both the septum and the whole cell was

measured and the percentage of non-septal fluorescence calculated.

Peptidoglycan purification and mass-spectrometry analysis
S. aureus peptidoglycan was purified as previously described (Turner et al., 2010). Specifically, 1L

cultures of S. aureus SH1000 and S. aureus SH1000 containing 1 mM ADA were grown for 4 hr

before peptidoglycan was extracted and purified. Peptidoglycan was solubilized by digestion with

50 mg Cellosyl per mg peptidoglycan (dry weight) overnight at 37˚C. Samples were boiled to inacti-

vate the Cellosyl and reduced using sodium borohydride (Bern et al., 2017). Reduced muropeptides

were separated on an Agilent Technologies Accurate Mass Q-TOF LC/MS using a Hypersil Gold aQ

column (200 � 42.1 mm, 1.9 mm particle size) with a gradient of 0–30% (v/v) water/ACN both contain-

ing 0.1% (v/v) formic acid over 60 mins.
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ing—review and editing; Stéphane Mesnage, Supervision, Methodology, Writing—review and edit-

ing; Simon J Foster, Formal analysis, Supervision, Funding acquisition, Project administration,

Writing—review and editing

Author ORCIDs

Victoria A Lund http://orcid.org/0000-0002-1637-2023

Katarzyna Wacnik http://orcid.org/0000-0002-9921-6746

Christa G Walther https://orcid.org/0000-0002-8962-3102

Adam JM Wollman http://orcid.org/0000-0002-5501-8131

Mark C Leake http://orcid.org/0000-0002-1715-1249

Simon Jones http://orcid.org/0000-0001-8043-7998

Simon J Foster https://orcid.org/0000-0001-7432-7805

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.32057.040

Author response https://doi.org/10.7554/eLife.32057.041

Additional files

Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.32057.015

References
Adams DW, Errington J. 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring.
Nature Reviews Microbiology 7:642–653. DOI: https://doi.org/10.1038/nrmicro2198, PMID: 19680248

Aggen JB, Humphrey JM, Gauss CM, Huang HB, Nairn AC, Chamberlin AR. 1999. The design, synthesis, and
biological evaluation of analogues of the serine-threonine protein phosphatase 1 and 2A selective inhibitor
microcystin LA: rational modifications imparting PP1 selectivity. Bioorganic & Medicinal Chemistry 7:543–564.
DOI: https://doi.org/10.1016/S0968-0896(98)00254-5, PMID: 10220039

Aish JL. 2003. Environmental regulation of virulence determinant expression in Staphylococcus aureus: University
of Sheffield.

Badrinarayanan A, Reyes-Lamothe R, Uphoff S, Leake MC, Sherratt DJ. 2012. In vivo architecture and action of
bacterial structural maintenance of chromosome proteins. Science 338:528–531. DOI: https://doi.org/10.1126/
science.1227126, PMID: 23112333

Bern M, Beniston R, Mesnage S. 2017. Towards an automated analysis of bacterial peptidoglycan structure.
Analytical and Bioanalytical Chemistry 409:551–560. DOI: https://doi.org/10.1007/s00216-016-9857-5,
PMID: 27520322

Bisson-Filho AW, Hsu YP, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS,
Brun YV, Garner EC. 2017. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell
division. Science 355:739–743. DOI: https://doi.org/10.1126/science.aak9973, PMID: 28209898

Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE. 2008. Super-resolution imaging in
live Caulobacter crescentus cells using photoswitchable EYFP. Nature Methods 5:947–949. DOI: https://doi.
org/10.1038/nmeth.1258, PMID: 18794860

Bottomley AL, Kabli AF, Hurd AF, Turner RD, Garcia-Lara J, Foster SJ. 2014. Staphylococcus aureusDivIB is a
peptidoglycan-binding protein that is required for a morphological checkpoint in cell division. Molecular
Microbiology:1041–1064. DOI: https://doi.org/10.1111/mmi.12813, PMID: 25287423

Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J. 2015. A multi-layered protein network stabilizes the
Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genetics 11:e1005128. DOI: https://doi.
org/10.1371/journal.pgen.1005128, PMID: 25848771

Cabeen MT, Jacobs-Wagner C. 2005. Bacterial cell shape. Nature Reviews Microbiology 3:601–610. DOI: https://
doi.org/10.1038/nrmicro1205, PMID: 16012516

Coltharp C, Kessler RP, Xiao J. 2012. Accurate construction of photoactivated localization microscopy (PALM)
images for quantitative measurements. PLoS One 7:e51725. DOI: https://doi.org/10.1371/journal.pone.
0051725, PMID: 23251611

Daniel RA, Errington J. 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped
cell. Cell 113:767–776. DOI: https://doi.org/10.1016/S0092-8674(03)00421-5, PMID: 12809607

Lund et al. eLife 2018;7:e32057. DOI: https://doi.org/10.7554/eLife.32057 17 of 31

Research article Microbiology and Infectious Disease



Endesfelder U, Malkusch S, Fricke F, Heilemann M. 2014. A simple method to estimate the average localization
precision of a single-molecule localization microscopy experiment. Histochemistry and Cell Biology 141:629–
638. DOI: https://doi.org/10.1007/s00418-014-1192-3, PMID: 24522395

Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, Bayles KW. 2013. A genetic resource for rapid
and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4:e00537-12.
DOI: https://doi.org/10.1128/mBio.00537-12, PMID: 23404398

Gautam S, Kim T, Spiegel DA. 2015. Chemical probes reveal an extraseptal mode of cross-linking in
Staphylococcus aureus. Journal of the American Chemical Society 137:7441–7447. DOI: https://doi.org/10.
1021/jacs.5b02972, PMID: 26035224

Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. 2009. Enzymatic assembly of DNA
molecules up to several hundred kilobases. Nature Methods 6:343–345. DOI: https://doi.org/10.1038/nmeth.
1318, PMID: 19363495

Giesbrecht P, Kersten T, Maidhof H, Wecke J. 1998. Staphylococcal cell wall: morphogenesis and fatal variations
in the presence of penicillin. Microbiology and Molecular Biology Reviews : MMBR 62:1371–1414. PMID:
9841676

Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F.
2017. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus
aureus. International Journal of Medical Microbiology 307:1–10. DOI: https://doi.org/10.1016/j.ijmm.2016.12.
001, PMID: 27989665

Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova
SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG.
2008. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675.
DOI: https://doi.org/10.1126/science.1159961, PMID: 18801997

Holden SJ, Pengo T, Meibom KL, Fernandez Fernandez C, Collier J, Manley S. 2014. High throughput 3D super-
resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. PNAS 111:4566–4571.
DOI: https://doi.org/10.1073/pnas.1313368111, PMID: 24616530

Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ. 2002b. sigmaB modulates virulence
determinant expression and stress resistance: characterization of a functional rsbU strain derived from
Staphylococcus aureus 8325-4. Journal of Bacteriology 184:5457–5467. DOI: https://doi.org/10.1128/JB.184.
19.5457-5467.2002, PMID: 12218034

Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. 2002a. MntR modulates expression of the
PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake.
Molecular Microbiology 44:1269–1286. DOI: https://doi.org/10.1046/j.1365-2958.2002.02944.x, PMID: 1202
8379

Huang B, Babcock H, Zhuang X. 2010. Breaking the diffraction barrier: super-resolution imaging of cells. Cell
143:1047–1058. DOI: https://doi.org/10.1016/j.cell.2010.12.002, PMID: 21168201

Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical
reconstruction microscopy. Science 319:810–813. DOI: https://doi.org/10.1126/science.1153529, PMID: 1
8174397

Hussain M, Hastings JG, White PJ. 1991. A chemically defined medium for slime production by coagulase-
negative staphylococci. Journal of Medical Microbiology 34:143–147. DOI: https://doi.org/10.1099/00222615-
34-3-143, PMID: 2010904

Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi AM, Vernet T, Morlot C. 2015. Remodeling of the Z-Ring
nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization
microscopy. mBio 6:e01108-15. DOI: https://doi.org/10.1128/mBio.01108-15, PMID: 26286692

Jorge AM, Hoiczyk E, Gomes JP, Pinho MG. 2011. EzrA contributes to the regulation of cell size in
Staphylococcus aureus. PLoS One 6:e27542. DOI: https://doi.org/10.1371/journal.pone.0027542,
PMID: 22110668

Komatsuzawa H, Sugai M, Nakashima S, Yamada S, Matsumoto A, Oshida T, Suginaka H. 1997. Subcellular
localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus. Microbiology and
Immunology 41:469–479. DOI: https://doi.org/10.1111/j.1348-0421.1997.tb01880.x, PMID: 9251058
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Ovesný M, Křı́žek P, Borkovec J, Svindrych Z, Hagen GM. 2014. ThunderSTORM: a comprehensive ImageJ plug-
in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390.
DOI: https://doi.org/10.1093/bioinformatics/btu202, PMID: 24771516

Palayret M, Armes H, Basu S, Watson AT, Herbert A, Lando D, Etheridge TJ, Endesfelder U, Heilemann M, Laue
E, Carr AM, Klenerman D, Lee SF. 2015. Virtual-’light-sheet’ single-molecule localisation microscopy enables
quantitative optical sectioning for super-resolution imaging. PLoS One 10:e0125438. DOI: https://doi.org/10.
1371/journal.pone.0125438, PMID: 25884495

Pereira AR, Hsin J, Król E, Tavares AC, Flores P, Hoiczyk E, Ng N, Dajkovic A, Brun YV, VanNieuwenhze MS,
Roemer T, Carballido-Lopez R, Scheffers DJ, Huang KC, Pinho MG. 2016. FtsZ-Dependent Elongation of a
Coccoid Bacterium. mBio 7:e00908-16. DOI: https://doi.org/10.1128/mBio.00908-16, PMID: 27601570

Plank M, Wadhams GH, Leake MC. 2009. Millisecond timescale slimfield imaging and automated quantification
of single fluorescent protein molecules for use in probing complex biological processes. Integrative Biology 1:
602–612. DOI: https://doi.org/10.1039/b907837a, PMID: 20023777

Reyes-Lamothe R, Sherratt DJ, Leake MC. 2010. Stoichiometry and architecture of active DNA replication
machinery in Escherichia coli. Science 328:498–501. DOI: https://doi.org/10.1126/science.1185757,
PMID: 20413500

Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. CSHL Press.
Schenk S, Laddaga RA. 1992. Improved method for electroporation of Staphylococcus aureus. FEMS
Microbiology Letters 73:133–138. DOI: https://doi.org/10.1111/j.1574-6968.1992.tb05302.x, PMID: 1521761

Steele VR, Bottomley AL, Garcia-Lara J, Kasturiarachchi J, Foster SJ. 2011. Multiple essential roles for EzrA in cell
division of Staphylococcus aureus. Molecular Microbiology 80:542–555. DOI: https://doi.org/10.1111/j.1365-
2958.2011.07591.x, PMID: 21401734

Lund et al. eLife 2018;7:e32057. DOI: https://doi.org/10.7554/eLife.32057 19 of 31

Research article Microbiology and Infectious Disease



Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN. 2015. Live-cell superresolution
microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. PNAS 112:E4390–E4399.
DOI: https://doi.org/10.1073/pnas.1507592112, PMID: 26224838

Strauss MP, Liew AT, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ. 2012. 3D-SIM super resolution
microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering
cytokinesis. PLoS Biology 10:e1001389. DOI: https://doi.org/10.1371/journal.pbio.1001389, PMID: 22984350

Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira
PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D,
et al. 2012. Restoring methicillin-resistant Staphylococcus aureus susceptibility to b-lactam antibiotics. Science
Translational Medicine 4126:ra35. DOI: https://doi.org/10.1126/scitranslmed.3003592, PMID: 22440737

Thompson RE, Larson DR, Webb WW. 2002. Precise nanometer localization analysis for individual fluorescent
probes. Biophysical Journal 82:2775–2783. DOI: https://doi.org/10.1016/S0006-3495(02)75618-X, PMID: 11
964263

Touhami A, Jericho MH, Beveridge TJ. 2004. Atomic force microscopy of cell growth and division in
Staphylococcus aureus. Journal of Bacteriology 186:3286–3295. DOI: https://doi.org/10.1128/JB.186.11.3286-
3295.2004, PMID: 15150213

Turner RD, Foster SJ. 2018. LM (Localisation Microscopy) Matlab. https://doi.org/10.15131/shef.data.5831208
[Accessed 29 January, 2018].

Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ. 2013. Cell wall elongation mode in Gram-negative bacteria
is determined by peptidoglycan architecture. Nature Communications 4:1496. DOI: https://doi.org/10.1038/
ncomms2503, PMID: 23422664

Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ. 2010. Peptidoglycan architecture can
specify division planes in Staphylococcus aureus. Nature Communications 1:26–9. DOI: https://doi.org/10.
1038/ncomms1025, PMID: 20975691

Turner RD, Vollmer W, Foster SJ. 2014. Different walls for rods and balls: the diversity of peptidoglycan.
Molecular Microbiology 91:862–874. DOI: https://doi.org/10.1111/mmi.12513, PMID: 24405365

Wheeler R, Turner RD, Bailey RG, Salamaga B, Mesnage S, Mohamad SA, Hayhurst EJ, Horsburgh M, Hobbs JK,
Foster SJ. 2015. Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan
hydrolases. mBio 6:e00660. DOI: https://doi.org/10.1128/mBio.00660-15, PMID: 26220963

Wollman AJM, Miller H, Zhou Z, Leake MC. 2015. Probing DNA interactions with proteins using a single-
molecule toolbox: inside the cell, in a test tube and in a computer. Biochemical Society Transactions 43:139–
145. DOI: https://doi.org/10.1042/BST20140253

Wollman AJ, Leake MC. 2015. Millisecond single-molecule localization microscopy combined with convolution
analysis and automated image segmentation to determine protein concentrations in complexly structured,
functional cells, one cell at a time. Faraday Discussions 184:401–424. DOI: https://doi.org/10.1039/
C5FD00077G, PMID: 26419209

Wollman AJ, Miller H, Foster S, Leake MC. 2016. An automated image analysis framework for segmentation and
division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling
time scales using bespoke Slimfield microscopy. Physical Biology 13:055002. DOI: https://doi.org/10.1088/
1478-3975/13/5/055002, PMID: 27749270

Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J. 2017. GTPase activity-coupled treadmilling of the
bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744–747. DOI: https://doi.org/10.1126/
science.aak9995, PMID: 28209899

Zacharias DA, Violin JD, Newton AC, Tsien RY. 2002. Partitioning of lipid-modified monomeric GFPs into
membrane microdomains of live cells. Science 296:913–916. DOI: https://doi.org/10.1126/science.1068539,
PMID: 11988576

Zhou X, Halladin DK, Rojas ER, Koslover EF, Lee TK, Huang KC, Theriot JA. 2015. Bacterial division. Mechanical
crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348:574–578.
DOI: https://doi.org/10.1126/science.aaa1511, PMID: 25931560

Lund et al. eLife 2018;7:e32057. DOI: https://doi.org/10.7554/eLife.32057 20 of 31

Research article Microbiology and Infectious Disease



Appendix 1

DOI: https://doi.org/10.7554/eLife.32057.016

General synthetic methods
H-D-aza-OH.HCl, T3P in DMF, H-D-ala-OtBu, N-succinimidyl-7-hydroxycoumarin-3-carboxylate,

Boc-D-Dap-OH, 6-[tetramethylrhodamine-5(6)-carboxamido]hexanoic acid succinimidyl ester

are commercially available and were used as supplied.

Synthesis of 3-azido-N-[(1,1-dimethylethoxy)carbonyl]-D-
alanine (Boc-D-aza-ala-OH) (Appendix 1—figure 1)
H-D-aza-OH.HCl (527 mg, 4.1 mmol) was added to a stirred solution of sodium carbonate (1.17

g, 11.1 mmol) in water (5 mL). The solution was cooled to 0˚C, followed by drop-wise addition

of a solution of di-t-butyldicarbonate (1.25 g, 5.3 mmol) in acetonitrile (5 mL). The mixture was

allowed to warm to room temperature overnight, diluted with water (50 mL), and washed with

diethyl ether (20 mL). The aqueous layer was acidified to pH 2 using 1M HCl and extracted

with ethyl acetate (3 � 50 mL). The combined organic layers were washed with brine (20 mL),

dried over magnesium sulfate, filtered and evaporated to give a clear, colourless oil (850 mg,

90%) that was used directly without further purification; /½ �25
D
�25.0 (c 1.0, MeOH); nmax/cm

�1

(film) 3331, 2981, 2935, 2551, 2108, 1714, 1513; 1H NMR (400 MHz, MeOD) dH4.33 (1H, t J 5.1

Hz, CH), 3.70–3,63 (2H, m, CH2), 1.48 [9H, s, (CH3)3] (Appendix 1—figure 2); 13C NMR (100

MHz, MeOD) dC 171.5 (CO), 156.3 (CO), 79.5 (C), 53.5 (CH), 51.8 (CH2), 27.2 (CH3)

(Appendix 1—figure 3); m/z (TOF MS ES+) 365 (30%), 297 (Komis et al., 2015), 229.0949

(100, M+-H. C8H13N4O4 requires 229.0942).

Appendix 1—figure 1. Structure of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-alanine (Boc-D-

aza-ala-OH).

DOI: https://doi.org/10.7554/eLife.32057.017
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Appendix 1—figure 2. 1D 1H NMR Spectrum of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-

alanine (Boc-D-aza-ala-OH.

DOI: https://doi.org/10.7554/eLife.32057.018

Appendix 1—figure 3. 1D 13C NMR Spectrum of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-

alanine (Boc-D-aza-ala-OH).

DOI: https://doi.org/10.7554/eLife.32057.019

This compound has previously been prepared in the literature by different methods. NMR

data have been reported in DMSO – no specific rotation was recorded (Aggen et al., 1999).
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Synthesis of 3-azido-N-[(1,1-dimethylethoxy)carbonyl] -D-
alanyl-D-alanine 1,1-dimethylethyl ester (Boc-D-aza-ala-D-
ala-OtBu) (Appendix 1—figure 4)

Appendix 1—figure 4. Structure of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-alanyl-D-alanine

1,1-dimethylethyl ester (Boc-D-aza-ala-D-ala-OtBu).

DOI: https://doi.org/10.7554/eLife.32057.020

Boc-D-aza-ala-OH (850 mg, 3.7 mmol), N-methylmorpholine (4.5 mL, 41 mmol) and H-D-ala-

OtBu (710 mg, 3.7 mmol) were added to dry DCM (100 mL) under argon. A 50 wt% solution of

T3P in DMF (2.4 g, 5.0 mL, 7.5 mmol) was added slowly and the mixture was stirred at room

temperature for 18 hr. The solvent was removed under vacuum, the remaining solid purified

by column chromatography on silica, eluting with a 1% to 5% gradient of methanol in

dichloromethane, to give a colourless oil (1.07 g, 73%); /½ �22
D
+5.45 (c 1.0, CHCl3); nmax/cm

�1

(ATR) 3020, 2986, 2930, 2104, 1721, 1661; 1H NMR (400 MHz, CDCl3) dH6.95 (1H, br d, J 6.2

Hz, NH), 5.41 (1H, br s, NH), 4.45 (1H, quint, J 7.1 Hz, CH3CH), 4.42 (1H, br s, CH) 3.86 (1H, br

dd, J 12.2 Hz and 2.6 Hz, CHH), 3.54 (1H, dd, J 12.2 Hz and 5.4 Hz, CHH), 1.48 (9H, s, 3 �

CH3), 1.40 (3H, d, J 7.1 Hz, CH3) (Appendix 1—figure 5); 13C NMR (100 MHz, CDCl3) dC 173.9

(C = O), 165.9 (C = O), 52.3 (CH), 50.8 (CH2), 48.5 (CH), 16.1 (CH3) (Appendix 1—figure 6);

m/z (TOF MS ES+) 358.2093 (100%, MH+. C15H28N5O5 requires 358.2090).

Appendix 1—figure 5. 1D 1H NMR Spectrum of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-

alanyl-D-alanine 1,1-dimethylethyl ester (Boc-D-aza-ala-D-ala-OtBu).

DOI: https://doi.org/10.7554/eLife.32057.021

Lund et al. eLife 2018;7:e32057. DOI: https://doi.org/10.7554/eLife.32057 23 of 31

Research article Microbiology and Infectious Disease



Appendix 1—figure 6. 1D 13C NMR Spectrum of 3-Azido-N-[(1,1-dimethylethoxy)carbonyl]-D-

alanyl-D-alanine 1,1-dimethylethyl ester (Boc-D-aza-ala-D-ala-OtBu).

DOI: https://doi.org/10.7554/eLife.32057.022

Synthesis of 3-azido-D-alanyl-D-alanine, 2,2,2-
trifluoroacetate [D-aza-ala-D-ala (ADA-DA) TFA salt]
(Appendix 1—figure 7)

Appendix 1—figure 7. Structure of 3-Azido-D-alanyl-D-alanine, 2,2,2-trifluoroacetate [D-aza-

ala-D-ala (ADA-DA) TFA salt].

DOI: https://doi.org/10.7554/eLife.32057.023

Boc-D-aza-ala-D-ala-OtBu (112 mg, 0.28 mmol) stirred with TFA (1 mL) in methanol (5 mL)

for 5 hr at room temperature. The solvent was removed in vacuo to give a colourless oil (83

mg, 100%); /½ �23
D
�2.00 (c 1.0, MeOH); nmax/cm

�1 (film) 3081, 2120, 1670, 1563; 1H NMR (400

MHz, MeOD) dH4.46 (1H, q, J 7.3 Hz, CH3CH), 4.07 (1H, dd, J 4.0 Hz and 7.5 Hz, CH2CH) 3.96

(1H, dd, J 4.0 Hz and 13.5 Hz, CHH), 3.77 (1H, dd, J 7.5 Hz and 13.5 Hz, CHH), 1.46 (3H, d, J

7.3 Hz, CH3) (Appendix 1—figure 8); 13C NMR (100 MHz, MeOD) dC 173.9 (CO), 165.9 (CO),

52.3 (CH), 50.8 (CH2), 48.4 (CH), 16.1 (CH3) (Appendix 1—figure 9); m/z (TOF MS ES+) 224

(10%), 202.0940 (100, MH+. C6H12N5O3 requires 202.0935), 145 (Steele et al., 2011).
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Appendix 1—figure 8. 1D 1H NMR Spectrum of 3-Azido-D-alanyl-D-alanine, 2,2,2-trifluoroace-

tate [D-aza-ala-D-ala (ADA-DA) TFA salt].

DOI: https://doi.org/10.7554/eLife.32057.024

Appendix 1—figure 9. 1D 13C NMR Spectrum of 3-Azido-D-alanyl-D-alanine, 2,2,2-trifluoroace-

tate [D-aza-ala-D-ala (ADA-DA) TFA salt].

DOI: https://doi.org/10.7554/eLife.32057.025

The compound has been previously reported as a white solid, although no specific rotation

or IR data were reported. 1H and 13C literature date was recorded in DMSO, but is in broad

agreement (Liechti et al., 2014).
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Synthesis of N-[(1,1-Dimethylethoxy)carbonyl]�3-{[(7-
hydroxy-2-oxo-2H-1-benzopyran-3-yl) carbonyl] amino} D-
alanine (N-Boc-HADA) (Appendix 1—figure 10)

Appendix 1—figure 10. Structure of N-[(1,1-Dimethylethoxy)carbonyl]�3-{[(7-hydroxy-2-oxo-

2H-1-benzopyran-3-yl) carbonyl] amino} D-alanine (N-Boc-HADA).

DOI: https://doi.org/10.7554/eLife.32057.026

N-Succinimidyl-7-hydroxycoumarin-3-carboxylate (250 mg, 0.82 mmol) was dissolved in

triethylamine (0.26 mL) and dry CH2Cl2 (15 mL) under an inert atmosphere at room

temperature. Boc-D-Dap-OH (168 mg, 0.82 mmol) was added to the mixture and stirred for 18

hr at room temperature. The mixture was diluted with ethyl acetate (50 mL) and washed with

1M HCl (2 � 10 mL). The aqueous layer was extracted with ethyl acetate (3 � 10 ml) the

combined organic layers dried over magnesium sulfate, then filtered. The solvent was

removed in vacuo to yield white powder (317 mg, 99%) the powder could be further purified

by recrystallization from methanol (186 mg, 58%); /½ �25
D
�54.0 (c 1.0, MeOH); nmax/cm

�1 (film)

3411, 1692, 1600, 1543; 1H NMR (400 MHz, MeOD) dH8.79 (1H, s, ArCH), 7.69 (1H, d, J 8.6

Hz, ArCH), 6.91 (1H, dd, J 2.0 Hz and 8.6 Hz, ArCH), 6.78 (1H, d, J 2.0 Hz, ArCH), 4.42–4.39

(1H, m, CH), 3.99 (1H, dd, J 13.5 Hz and 4.6 Hz, CHH), 3.60 (1H, dd, J 13.5 and 8.2 Hz, CHH),

1.44 (9H, s, CH3) (Appendix 1—figure 11); 13C NMR (100 MHz, MeOD) dC 172.8 (CO), 164.4

(CO), 163.6 (CO), 161.6 (CO), 157.0 (C), 156.5 (C), 148.5 (CH), 131.6 (CH), 114.3 (CH), 112.9

(C), 111.4 (C), 101.7 (CH), 79.3 (C), 53.7 (CH), 40.7 (CH2), 27.3 (CH3) (Appendix 1—figure 12);

m/z (TOF MS ES+) 391.1166 (100%, M+-H. C18H19N2O8 requires 391.1147).
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Appendix 1—figure 11. 1D 1H NMR Spectrum of N-[(1,1-Dimethylethoxy)carbonyl]�3-{[(7-

hydroxy-2-oxo-2H-1-benzopyran-3-yl) carbonyl] amino} D-alanine (N-Boc-HADA).

DOI: https://doi.org/10.7554/eLife.32057.027

Appendix 1—figure 12. 1D 13C NMR Spectrum of N-[(1,1-Dimethylethoxy)carbonyl]�3-{[(7-

hydroxy-2-oxo-2H-1-benzopyran-3-yl) carbonyl] amino} D-alanine (N-Boc-HADA).

DOI: https://doi.org/10.7554/eLife.32057.028
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Synthesis of 3-{[(7-Hydroxy-2-oxo-2H-1-benzopyran-3-yl)
carbonyl] amino} D-alanine, 2,2,2-trifluoroacetate (HADA
TFA salt) (Appendix 1—figure 13)

Appendix 1—figure 13. Structure of 3-{[(7-Hydroxy-2-oxo-2H-1-benzopyran-3-yl) carbonyl]

amino} D-alanine, 2,2,2-trifluoroacetate (HADA TFA salt).

DOI: https://doi.org/10.7554/eLife.32057.029

Trifluoroacetic acid (2 mL) was added to N-Boc-HADA (96 mg, 0.24 mmol) in DCM (2 mL)

and stirred at room temperature for 3 hr. The solvent was removed in vacuo to yield dark

orange oil that was used without further purification (72 mg, 99%); /½ �23
D
�1.5 (c 1.0, MeOH);

nmax/cm
�1 (film) 3388, 3315, 3143, 2947, 2838, 1701, 1626, 1539, 1430; 1H NMR (400 MHz,

MeOD), dH8.81 (1H, s, ArCH), 7.69 (1H, d, J 8.6 Hz, ArCH), 6.91 (1H, dd, J 8.6 Hz and 2.0 Hz,

ArCH), 6.78 (1H, d, J 2.0 Hz, ArCH), 4.29 (1H, dd, J 6.4 Hz and 3.8 Hz, CH), 3.99 (1H, dd, J 3.8

Hz and 14.5 Hz, CHH), 3.6 (1H, dd, J 6.4 Hz and 14.5 Hz, CHH) (Appendix 1—figure 14); 13C

NMR (400 MHz, MeOD), dC 168.5 (CO), 164.7 (CO), 164.7 (CO), 161.7 (C), 157.1 (C), 148.9

(CH), 131.7 (CH), 114.4 (CH), 112.5 (C), 111.3 (C), 101.7 (CH), 53.2 (CH), 39.1 (CH2)

(Appendix 1—figure 15); m/z (TOF MS ES+) 305 (100%), 293.0777 (65, MH+. C13H13N2O6

requires 292.0774).
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Appendix 1—figure 14. 1D 1H NMR Spectrum of 3-{[(7-Hydroxy-2-oxo-2H-1-benzopyran-3-yl)

carbonyl] amino} D-alanine, 2,2,2-trifluoroacetate (HADA TFA salt).

DOI: https://doi.org/10.7554/eLife.32057.030

Appendix 1—figure 15. 1D 13C NMR Spectrum of 3-{[(7-Hydroxy-2-oxo-2H-1-benzopyran-3-yl)

carbonyl] amino} D-alanine, 2,2,2-trifluoroacetate (HADA TFA salt).

DOI: https://doi.org/10.7554/eLife.32057.031

The compound has been previously reported, but all analytical data have been recorded in

DMSO, so is in broad agreement (Kuru et al., 2012).
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Appendix 1—table 1. Strains used in this study.

Strain Relevant Genotype/markers Source

SH1000 Functional rsbU+ derivative of 8325–4 (Horsburgh et al., 2002b)

RN4220 Restriction deficient transformation recipient (Kreiswirth et al., 1983)

CYL316 S. aureus RN4220 pCL112D19 (cm) (Lee et al., 1991)

JGL227 S. aureus SH1000 ezrA-gfp+ (ery) (Steele et al., 2011)

SH4386 S. aureus SH1000 ezrA-eyfp (kan) This study

SH4388 S. aureus SH1000 ezrA-eyfp DezrA (kan, tet) This study

SH4603 S. aureus SH1000 ezrA-meyfp (kan) This study

SH4604 S. aureus SH1000 ezrA-meyfp DezrA (kan, tet) This study

SH4639 S. aureus SH1000 ezrA-gfp (kan) This study

SH4640 S. aureus SH1000 ezrA-gfp DezrA (kan, tet) This study

SH4641 S. aureus SH1000 ezrA-snap (kan) This study

SH4642 S. aureus SH1000 ezrA-snap DezrA (kan, tet) This study

SH4652 S. aureus SH1000 ezrA-eyfp DezrA pCQ11-FtsZ-SNAP (kan, tet, ery) This study

SH4665 S. aureus SH1000 pCQ11-FtsZ-eYFP (ery) This study

NE679 S. aureus JE2 with transposon insertion in pbp4 (ery) (Fey et al., 2013)

SH4425 S. aureus SH1000 pbp4 (ery) This study

N315 Methicillin-resistant S. aureus (Kuroda et al., 2001)

SU492 B. subtilis SU5 Pxyl-ftsZ-yfp (spec) (Monahan et al., 2014)

DOI: https://doi.org/10.7554/eLife.32057.032

Appendix 1—table 2. Plasmids used in this study

Plasmid Relevant genotype/markers Source

pGM074
pKASBAR-kan (Bottomley et al., 2014) carrying ezra-psmorange
under the putative ezrA promoter (amp, kan)

G. McVicker

pSNAP-tag
(T7)�2

E. coli expression plasmid carrying the snap gene under the control
of the T7 promoter (amp)

New England
Biolabs

pOB
pGEM3Zf(+) cloning vector containing the erythromycin resistance
cassette (amp, ery)

(Horsburgh et al.,
2002a)

pAISH TetR derivative of pMUTIN4 (Aish, 2003)

pKASBAR-
EzrA-eYFP

pKASBAR-kan containing ezrA-eyfp under the putative ezrA pro-
moter (amp, kan)

This study

pKASBAR-
EzrA-meYFP

pKASBAR-kan containing ezrA-meyfp under the putative ezrA
promoter (amp, kan)

This study

pKASBAR-
EzrA-GFP

pKASBAR-kan containing ezrA-gfp under the putative ezrA promoter
(amp, kan)

This study

pKASBAR-
EzrA-SNAP

pKASBAR-kan containing ezrA-snap under the putative ezrA pro-
moter (amp, kan)

This study

pOB-DezrA

pOB containing the ezrA deletion cassette consisting of a 1.5 kb
fragment of the upstream region of S. aureus ezrA, the tetracycline
resistance cassette from pAISH and a 1.5 kb fragment of the
downstream region of S. aureus ezrA (amp, ery, tet)

This study

pSS26b pUC19 encoding snap (amp) Covalys

pSS26bFtsZ-
C

pSS26b containing ftsZ-snap (amp) This study

pCQ11
E. coli-S. aureus shuttle vector containing lacI, Pspac and gfp (amp,
ery)

(Hardt et al.,
2017)

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Plasmid Relevant genotype/markers Source

pCQ11-FtsZ-
SNAP

pCQ11 derivative containing ftsZ-snap under Pspac (amp, ery) This study

pCQ11-FtsZ-
eYFP

pCQ11-FtsZ-SNAP with eyfp replacement of snap (amp, ery) This study

DOI: https://doi.org/10.7554/eLife.32057.033

Appendix 1—table 3. Oligonucleotides used in this study.

Oligonucleotide name Sequence (5’ to 3’)

eYFP-F CGGCGCGCCTCAGGTTCAGGTTCAGGTATGGTGAGCAAGGGCGAG

eYFP-R CGCGGCCGCTTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGC

GFP-F
CGGCGCGCCTCAGGTTCAGGTTCAGGTATGGCTAGCAAAGGAGAAGAA
CTTTTCACTGGAGTTGTCCC

GFP-R CGCGGCCGCTTATTTGTAGAGCTCATCCATGCCATGTGTAATCCCAGCAGC

SNAP-F
GGGCGCGCCTCAGGTTCAGGTTCAGGTATGGACAAAGACTGCGAAATG
AAGCGCAC

SNAP-R CGAATTCTCATTAACCCAGCCCAGGCTTGCCCAGTCTG

meYFP-F CTACCAGTCCAAGCTGAGCAAAGAC

meYFP-R CTCAGGTAGTGGTTGTCG

pOB-ezrA-up-F TTTACGTACACTATCTGCAGATGCTTCTCCTCCTAATTTATCATT

pOB-ezrA-up-R
ATTCGAGCTCGGTACCCGGGTTTTAAATTAATAAAAAAAACAC
CCACAATT

pOB-ezrA-down-F CACTATAGAATACTCAAGCTTACTCCTTAATTTCCTCATAAATGATGA

pOB-ezrA-down-R
GGATCAACTTTGGGAGAGAGAAACTAGTATGTAGTTATACTTAAA
TAATATGAGC

pOB-TetR-F TAAATTAGGAGGAGAAGCATCTGCAGATAGTGTACGTAAAAAGA

pOB-TetR-R GTATAACTACATACTAGTTTCTCTCTCCCAAAGTTGATCCC

ftsZ-eyfp-F ACATGGCCATGTCAGGTTCAG

ftsZ-eyfp-R GGCGCGCCTTATTTATATAATTC

FGFtsZXhoI-F CTCGAGATGTTAGAATTTGAACAAGG

FGFtsZEcoRI-R TTAGAATTCACGTCTTGTTCTTCTTGAA

FGFtsZNheI-F GTTGCTAGCATGTTAGAATTTGAACAAGG

FGFtsZAscI-R GTTGGCGCGCCTTATCCCAGACCCGGTTTAC

DOI: https://doi.org/10.7554/eLife.32057.034
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