51 research outputs found

    Life History Phenology and Sediment Size Association of the Dragonfly Cordulegaster dorsalis (Odonata: Cordulegastridae) in an Ephemeral Habitat in Southwestern British Columbia

    Get PDF
    The life cycle of the dragonfly Cordulegaster dorsalis was studied over one year by systematic sampling of larvae in three intermittent headwater streams in southwestern British Columbia. We determined that larvae normally take three years to reach maturity, emerging throughout July and August. There is limited evidence suggesting a split cohort development, with early emergence after two years. Additionally, we tested whether larval instars were distributed randomly or if they occupied different sediment microhabitats. Smaller animals tend to be associated with smaller grained organic sediments, although there was high variation between the streams

    Latitudinal Variation in Top-Down and Bottom-Up Control of a Salt Marsh Food Web

    Get PDF
    The shrub Iva frutescens, which occupies the terrestrial border of U.S. Atlantic Coast salt marshes, supports a food web that varies strongly across latitude. We tested whether latitudinal variation in plant quality (higher at high latitudes), consumption by omnivores (a crab, present only at low latitudes), consumption by mesopredators (ladybugs, present at all latitudes), or the life history stage of an herbivorous beetle could explain continental-scale field patterns of herbivore density. In a mesocosm experiment, crabs exerted strong top-down control on herbivorous beetles, ladybugs exerted strong top-down control on aphids, and both predators benefited plants through trophic cascades. Latitude of plant origin had no effect on consumers. Herbivorous beetle density was greater if mesocosms were stocked with beetle adults rather than larvae, and aphid densities were reduced in the “adult beetle” treatment. Treatment combinations representing high and low latitudes produced patterns of herbivore density similar to those in the field. We conclude that latitudinal variation in plant quality is less important than latitudinal variation in top consumers and competition in mediating food web structure. Climate may also play a strong role in structuring high-latitude salt marshes by limiting the number of herbivore generations per growing season and causing high overwintering mortality

    Are forested buffers an effective conservation strategy for riparian fauna? An assessment using meta-analysis

    Get PDF
    Historically, forested riparian buffers have been created to provide protection for aquatic organisms and aquatic ecosystem functions. Increasingly, new and existing riparian buffers are being used also to meet terrestrial conservation requirements. To test the effectiveness of riparian buffers for conserving terrestrial fauna, we conducted a meta-analysis using published data from 397 comparisons of species abundance in riparian buffers and unharvested (reference) riparian sites. The response of terrestrial species to riparian buffers was not consistent between taxonomic groups; bird and arthropod abundances were significantly greater in buffers relative to unharvested areas, whereas amphibian abundance decreased. Edge-preferring species were more abundant in buffer sites than reference sites, whereas species associated with interior habitat were not significantly different in abundance. The degree of buffer effect on animal abundance was unrelated to buffer width; wider buffers did not result in greater similarity between reference and buffer sites. However, responses to buffer treatment were more variable in buffers ,50 m wide, a commonly prescribed width in many management plans. Our results indicate that current buffer prescriptions do not maintain most terrestrial organisms in buffer strips at levels comparable to undisturbed sites

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000–18: a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km × 5 km resolution in 98 LMICs based on 2·1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205 000 (95% uncertainty interval 147 000–257 000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution.This study was funded by the Bill & Melinda Gates Foundation. L G Abreu acknowledges support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes; finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico, and Fundação de Amparo à Pesquisa do Estado de Minas Gerais. D A Bennett acknowledges support from the Oxford National Institute for Health Research (NIHR) Biomedical Research Centre (BRC). The views expressed are those of the author and not necessarily those of the NHS, the NIHR, or the UK Department of Health and Social Care. Z A Bhutta acknowledges support from the Institute for Global Health & Development at the Aga Khan University. F Carvalho acknowledges UID/MULTI/04378/2019 and UID/QUI/50006/2019 support with funding from FCT/MCTES through national funds. J-W De Neve is supported by the Alexander von Humboldt Foundation. S Dey acknowledges the support from the Centre of Excellence for Research on Clean Air, IIT Delhi. M Ausloos and C Herteliu are partly supported by a grant of the Romanian National Authority for Scientific Research and Innovation (project number PN-III-P4-ID-PCCF-2016-0084). C Herteliu is partly supported by a grant of the Romanian National Authority for Scientific Research and Innovation (project number PN-III-P2-2.1-SOL-2020-2-0351), the Romanian Ministry of Research Innovation and Digitalization (project number ID-585-CTR-42-PFE-2021), and the Romanian Ministry of Labour and Social Justice (30/PSCD/2018). M Jakovljevic acknowledges partial support through Grant OI 175 014 of the Ministry of Science Education and Technological Development of the Republic of Serbia. J S John acknowledges support from the Kunshan Government and China Center for Disease Control and Prevention. W Mendoza is a program analyst in population and development at the United Nations Population Fund country office in Peru, an institution that does not necessarily endorse this study. M N Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. K Krishan is supported by UGC Centre of Advanced Study (CAS II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar acknowledges support (FIC/NIH funded K43 TW010716-04 study). B Lacey acknowledges support from UK Biobank, the NIHR Oxford Biomedical Research Centre, and the British Heart Foundation Oxford Centre of Research Excellence. B R Nascimento acknowledges support in part by CNPq (Bolsa de produtividade em pesquisa, 312382/2019-7), by the Edwards Lifesciences Foundation (Every Heartbeat Matters Program 2020) and by FAPEMIG (grant APQ-000627-20). A M Samy acknowledges the support from the Egyptian Fulbright Mission Program. M M Santric-Milicevic acknowledges the support of the Ministry of Education, Science and Technological Development of Serbia (contract 175087). A Sheikh acknowledges the support of Health Data Research UK. I N Soyiri acknowledges support from the University of Hull internal QR Global Challenges Research Fund. S B Zaman acknowledges receiving a scholarship from the Australian Government research training program in support of his academic career. Y Zhang was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant Q20201104) and Outstanding Young and Middle Aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant T2020003).publishedVersio

    Identifying residual hotspots and mapping lower respiratory infection morbidity and mortality in African children from 2000 to 2017.

    Get PDF
    Lower respiratory infections (LRIs) are the leading cause of death in children under the age of 5, despite the existence of vaccines against many of their aetiologies. Furthermore, more than half of these deaths occur in Africa. Geospatial models can provide highly detailed estimates of trends subnationally, at the level where implementation of health policies has the greatest impact. We used Bayesian geostatistical modelling to estimate LRI incidence, prevalence and mortality in children under 5 subnationally in Africa for 2000-2017, using surveys covering 1.46 million children and 9,215,000 cases of LRI. Our model reveals large within-country variation in both health burden and its change over time. While reductions in childhood morbidity and mortality due to LRI were estimated for almost every country, we expose a cluster of residual high risk across seven countries, which averages 5.5 LRI deaths per 1,000 children per year. The preventable nature of the vast majority of LRI deaths mandates focused health system efforts in specific locations with the highest burden

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defi ned criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specifi c DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defi ned criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specifi c DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI)

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57.8% (95% CI 56.6-58.8) of global deaths and 41.2% (39.8-42.8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211.8 million [192.7 million to 231.1 million] global DALYs), smoking (148.6 million [134.2 million to 163.1 million]), high fasting plasma glucose (143.1 million [125.1 million to 163.5 million]), high BMI (120.1 million [83.8 million to 158.4 million]), childhood undernutrition (113.3 million [103.9 million to 123.4 million]), ambient particulate matter (103.1 million [90.8 million to 115.1 million]), high total cholesterol (88.7 million [74.6 million to 105.7 million]), household air pollution (85.6 million [66.7 million to 106.1 million]), alcohol use (85.0 million [77.2 million to 93.0 million]), and diets high in sodium (83.0 million [49.3 million to 127.5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore