167 research outputs found

    The Class Of Synthesizable Pseudomeasures

    Get PDF
    In this paper we study descriptive set theoretic questions related to concepts of harmonic synthesis on the unit circle T, and their relationship with the structure of uniqueness sets

    Computability on quasi-Polish spaces

    Get PDF
    International audienceWe investigate the effectivizations of several equivalent definitions of quasi-Polish spaces and study which characterizations hold effectively. Being a computable effectively open image of the Baire space is a robust notion that admits several characterizations. We show that some natural effectivizations of quasi-metric spaces are strictly stronger

    Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.Fil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin

    Balancing the immune response in the brain: IL-10 and its regulation

    Get PDF
    Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Organ-specific lymphatic vasculature: From development to pathophysiology.

    Get PDF
    Recent discoveries of novel functions and diverse origins of lymphatic vessels have drastically changed our view of lymphatic vasculature. Traditionally regarded as passive conduits for fluid and immune cells, lymphatic vessels now emerge as active, tissue-specific players in major physiological and pathophysiological processes. Lymphatic vessels show remarkable plasticity and heterogeneity, reflecting their functional specialization to control the tissue microenvironment. Moreover, alternative developmental origins of lymphatic endothelial cells in some organs may contribute to the diversity of their functions in adult tissues. This review aims to summarize the most recent findings of organotypic differentiation of lymphatic endothelial cells in terms of their distinct (patho)physiological functions in skin, lymph nodes, small intestine, brain, and eye. We discuss recent advances in our understanding of the heterogeneity of lymphatic vessels with respect to the organ-specific functional and molecular specialization of lymphatic endothelium, such as the hybrid blood-lymphatic identity of Schlemm's canal, functions of intestinal lymphatics in dietary fat uptake, and discovery of meningeal lymphatic vasculature and perivascular brain lymphatic endothelial cells

    Highly integrated workflows for exploring cardiovascular conditions: Exemplars of precision medicine in Alzheimer's disease and aortic dissection

    Get PDF
    For precision medicine to be implemented through the lens of in silico technology, it is imperative that biophysical research workflows offer insight into treatments that are specific to a particular illness and to a particular subject. The boundaries of precision medicine can be extended using multiscale, biophysics-centred workflows that consider the fundamental underpinnings of the constituents of cells and tissues and their dynamic environments. Utilising numerical techniques that can capture the broad spectrum of biological flows within complex, deformable and permeable organs and tissues is of paramount importance when considering the core prerequisites of any state-of-the-art precision medicine pipeline. In this work, a succinct breakdown of two precision medicine pipelines developed within two Virtual Physiological Human (VPH) projects are given. The first workflow is targeted on the trajectory of Alzheimer's Disease, and caters for novel hypothesis testing through a multicompartmental poroelastic model which is integrated with a high throughput imaging workflow and subject-specific blood flow variability model. The second workflow gives rise to the patient specific exploration of Aortic Dissections via a multi-scale and compliant model, harnessing imaging, computational fluid-dynamics (CFD) and dynamic boundary conditions. Results relating to the first workflow include some core outputs of the multiporoelastic modelling framework, and the representation of peri-arterial swelling and peri-venous drainage solution fields. The latter solution fields were statistically analysed for a cohort of thirty-five subjects (stratified with respect to disease status, gender and activity level). The second workflow allowed for a better understanding of complex aortic dissection cases utilising both a rigid-wall model informed by minimal and clinically common datasets as well as a moving-wall model informed by rich datasets

    Response to peripheral immune stimulation within the brain: magnetic resonance imaging perspective of treatment success

    Get PDF
    Chronic peripheral inflammation in diseases such as rheumatoid arthritis leads to alterations in central pain processing and consequently to mood disorders resulting from sensitization within the central nervous system and enhanced vulnerability of the medial pain pathway. Proinflammatory cytokines such as tumor necrosis factor (TNF) alpha play an important role herein, and therapies targeting their signaling (i.e., anti-TNF therapies) have been proven to achieve good results. However, the phenomenon of rapid improvement in the patients’ subjective feeling after the start of TNFα neutralization remained confusing, because it was observed long before any detectable signs of inflammation decline. Functional magnetic resonance imaging (fMRI), enabling visualization of brain activity upon peripheral immune stimulation with anti-TNF, has helped to clarify this discrepancy. Moreover, fMRI appeared to work as a reliable tool for predicting prospective success of anti-TNF therapy, which is valuable considering the side effects of the drugs and the high therapy costs. This review, which is mainly guided by neuroimaging studies of the brain, summarizes the state-of-the-art knowledge about communication between the immune system and the brain and its impact on subjective well-being, addresses in more detail the outcome of the abovementioned anti-TNF fMRI studies (rapid response to TNFα blockade within the brain pain matrix and differences in brain activation patterns between prospective therapy responders and nonresponders), and discusses possible mechanisms for the latter phenomena and the predictive power of fMRI
    corecore