13 research outputs found

    Bird populations most exposed to climate change are less sensitive to climatic variation

    Get PDF
    The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population. Intra-specific variations may contribute to heterogeneous responses to climate change across a species' range. Here, the authors investigate the phenology of two bird species across their breeding ranges, and find that their sensitivity to temperature is uncoupled from exposure to climate change.Peer reviewe

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Substantial decline of Northern European peatland bird populations : Consequences of drainage

    No full text
    Northern European peatlands are important habitats for biological conservation because they support rich biodiversity and unique species compositions. However, historical management of peatland habitats has had negative consequences for biodiversity and their degradation remains a major conservation concern. Despite increasing awareness of the conservation value of peatlands, the statuses and ecological requirements of peat land species have remained largely understudied. Here, we first analysed temporal trends of Northern European peatland birds to document the status of their populations using bird data from five different countries. Second, we used Finnish monitoring data to assess habitat preferences of peatland bird species, hence helping to target conservation to the most relevant habitat types. There was a general decline of 40% in Northern European peatland bird population sizes in 1981-2014 (speed of decline 1.5%/year) largely driven by Finland, where populations declined almost 50% (2.0% annual decline). In Sweden and Norway, peatland bird populations declined by 20% during 1997-2014 (1.0% annual decline). In contrast, southern populations in Estonia and Latvia, where the majority of open peatlands are protected, showed a 40% increase during 1981-2014 (1.0% annual increase). The most important habitat characteristics preferred by common peatland species in Finland were openness and low tree height, while wetness proved to be an important feature for waders. Drainage of peatlands had clear negative effects on the densities of many species, with the only exception of rustic bunting, which specializes on edge habitats. Our findings call for more effective conservation actions in Northern European peatland habitats, especially in Finland where peatland drainage represents a major threat to biodiversity.Peer reviewe

    Climate variation and regional gradients in population dynamics of two hole-nesting passerines.

    Get PDF
    Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected

    Bird populations most exposed to climate change are less sensitive to climatic variation

    No full text
    The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population

    Connecting the data landscape of long-term ecological studies : The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database ()-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.Peer reviewe

    Temperature synchronizes temporal variation in laying dates across European hole‐nesting passerines

    No full text
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations
    corecore