401 research outputs found

    Quantitative determination of the femoral offset templating error in total hip arthroplasty using a new geometric model.

    Get PDF
    AIMS Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. METHODS We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients' position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. RESULTS The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≀ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. CONCLUSION For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases.Cite this article: Bone Jt Open 2022;3(10):795-803

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p &gt; 2 GeV/c in the pseudorapidity range 2 &lt; η &lt; 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Highlights from the LHCb experiment

    Get PDF
    We report recent results by the LHCb collaboration in heavy-ion collisions in collider and fixed-target mode at the LHC. A large variety of measurements show the potential of LHCb in nuclear collisions

    Direct photon production at LHCb

    Get PDF
    At small Bjorken-x, the large gluon number density in the nucleon leads to gluon recombination competing with gluon splitting, which could result in saturation of the gluon PDF. This gluon saturation has yet to be conclusively observed. Direct photon production provides sensitivity to gluon densities in protons and nuclei, and the forward acceptance of LHCb detector allows for measurements of this process at low Bjorken-x, providing an ideal probe of saturation effects. Progress towards the measurement of forward direct photon production using the LHCb detector is presented

    Measurement of the CP asymmetry in B- -&gt; (Ds-D0) and B- -&gt; (D-D0) decays

    Get PDF
    The CP asymmetry in B- -&gt; (Ds-D0) and B- -&gt; (D-D0) decays is measured using LHCb data corresponding to an integrated luminosity of 3.0 fb(-1), collected in pp collisions at centre-of-mass energies of 7 and 8TeV. The results are A(CP) (B- -&gt; (Ds-D0)) = (-0.4 +/- 0.5 +/- 0.5)% and A(CP) (B- -&gt; (D-D0)) = (2.3 +/- 2.7 +/- 0.4)%, where the first uncertainties are statistical and the second systematic. This is the first measurement of A(CP) (B- -&gt; (Ds-D0)) and the most precise determination of A(CP) (B- -&gt; (D-D0)). Neither result shows evidence of CP violation

    Measurement of b hadron fractions in 13 TeV pp collisions

    Get PDF
    The production fractions of ÂŻ B 0 s and Λ 0 b hadrons, normalized to the sum of B − and ÂŻ B 0 fractions, are measured in 13 TeV p p collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of 1.67     fb − 1 . These ratios, averaged over the b hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are 0.122 ± 0.006 for ÂŻ B 0 s , and 0.259 ± 0.018 for Λ 0 b , where the uncertainties arise from both statistical and systematic sources. The Λ 0 b ratio depends strongly on transverse momentum, while the ÂŻ B 0 s ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of D + to D 0 mesons produced in the sum of ÂŻ B 0 and B − semileptonic decays is determined as 0.359 ± 0.006 ± 0.009 , where the uncertainties are statistical and systematic

    Observation of B(s)0→J/ψppÂŻ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ÂŻ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ÂŻ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ÂŻ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV
    • 

    corecore