416 research outputs found

    Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence

    Get PDF
    OBJECTIVES: Tuberculosis drug development is hampered by the slow growth of Mycobacterium tuberculosis. Bioluminescence, light produced by an enzymatic reaction, constitutes a rapid and highly sensitive measurement of cell metabolic function that can be used as an indirect marker of cell viability in drug screening assays. The aim of this work was to validate and standardize the use of luminescent M. tuberculosis strains to test the activity of antibacterial drugs in vitro and inside macrophages in a 96-well format. METHODS: We have used strains that express the bacterial lux operon and therefore do not require exogenous substrate to produce light, as well as strains expressing the firefly luciferase that need luciferin substrate. Results were compared with those obtained using the resazurin reduction assay and cfu plating. RESULTS: Using bioluminescence we were able to reduce the time required to measure the MIC and bactericidal concentrations of antimicrobials to just 3 and 6 days, respectively. Furthermore, antibacterial activity against intracellular mycobacteria was detected within 2 days post-infection. Results were comparable to those obtained by conventional methods. CONCLUSIONS: We have developed a simple and rapid method for screening antimycobacterial drugs in culture and in macrophages. The use of autoluminescent bacteria also facilitates the determination of growth and inhibition kinetics. The method is cost-effective, can easily be adapted to a larger scale and is amenable to automation. Current efforts are directed towards applying this technology to drug screening in vivo

    Pseudomonas Aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    Get PDF
    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozymeinduced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P \u3c 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections

    A Bilayer-Couple Model of Bacterial Outer Membrane Vesicle Biogenesis

    Get PDF
    Gram-negative bacteria naturally produce outer membrane vesicles (OMVs) that arise through bulging and pinching off of the outer membrane. OMVs have several biological functions for bacteria, most notably as trafficking vehicles for toxins, antimicrobials, and signaling molecules. While their biological roles are now appreciated, the mechanism of OMV formation has not been fully elucidated. We recently demonstrated that the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (PQS) is required for OMV biogenesis in P. aeruginosa. We hypothesized that PQS stimulates OMV formation through direct interaction with the outer leaflet of the outer membrane. To test this hypothesis, we employed a red blood cell (RBC) model that has been used extensively to study small-molecule–membrane interactions. Our results revealed that addition of PQS to RBCs induced membrane curvature, resulting in the formation of membrane spicules (spikes), consistent with small molecules that are inserted stably into the outer leaflet of the membrane. Radiotracer experiments demonstrated that sufficient PQS was inserted into the membrane to account for this curvature and that curvature induction was specific to PQS structure. These data suggest that a low rate of interleaflet flip-flop forces PQS to accumulate in and expand the outer leaflet relative to the inner leaflet, thus inducing membrane curvature. In support of PQS-mediated outer leaflet expansion, the PQS effect was antagonized by chlorpromazine, a molecule known to be preferentially inserted into the inner leaflet. Based on these data, we propose a bilayer-couple model to describe P. aeruginosa OMV biogenesis and suggest that this is a general mechanism for bacterial OMV formation

    Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles

    Get PDF
    Background: Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;). Methodology/Principal Findings: We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods. Conclusions/Significance: Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms

    Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles

    Get PDF
    Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including β-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner

    Noninvasive biophotonic imaging for studies of infectious disease

    Get PDF
    According to World Health Organization estimates, infectious organisms are responsible for approximately one in four deaths worldwide. Animal models play an essential role in the development of vaccines and therapeutic agents but large numbers of animals are required to obtain quantitative microbiological data by tissue sampling. Biophotonic imaging (BPI) is a highly sensitive, nontoxic technique based on the detection of visible light, produced by luciferase-catalysed reactions (bioluminescence) or by excitation of fluorescent molecules, using sensitive photon detectors. The development of bioluminescent/fluorescent microorganisms therefore allows the real-time noninvasive detection of microorganisms within intact living animals. Multiple imaging of the same animal throughout an experiment allows disease progression to be followed with extreme accuracy, reducing the number of animals required to yield statistically meaningful data. In the study of infectious disease, the use of BPI is becoming widespread due to the novel insights it can provide into established models, as well as the impact of the technique on two of the guiding principles of using animals in research, namely reduction and refinement. Here, we review the technology of BPI, from the instrumentation through to the generation of a photonic signal, and illustrate how the technique is shedding light on infection dynamics in vivo

    Membrane Topology Mapping of the O-Antigen Flippase (Wzx), Polymerase (Wzy), and Ligase (WaaL) from Pseudomonas aeruginosa PAO1 Reveals Novel Domain Architectures

    Get PDF
    Biosynthesis of B-band lipopolysaccharide (LPS) in Pseudomonas aeruginosa follows the Wzy-dependent pathway, requiring the integral inner membrane proteins Wzx (O-antigen [O-Ag] flippase), Wzy (O-Ag polymerase), and WaaL (O-Ag ligase). For an important first step in deciphering the mechanisms of LPS assembly, we set out to map the membrane topology of these proteins. Random and targeted 3′ wzx, wzy, and waaL truncations were fused to a phoA-lacZα dual reporter capable of displaying both alkaline phosphatase and β-galactosidase activity. The results from truncation fusion expression and the corresponding differential enzyme activity ratios allowed for the assignment of specific regions of the proteins to cytoplasmic, transmembrane (TM), or periplasmic loci. Protein orientation in the inner membrane was confirmed via C-terminal fusion to green fluorescent protein. Our data revealed unique TM domain properties in these proteins, particularly for Wzx, indicating the potential for a charged pore. Novel periplasmic and cytoplasmic loop domains were also uncovered, with the latter in Wzy and WaaL revealing tracts consistent with potential Walker A/B motifs

    Outer Membrane Vesicles as a Candidate Vaccine against Edwardsiellosis

    Get PDF
    Infection with Edwardsiella tarda, a Gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from Gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis

    The limitations of in vitro experimentation in understanding biofilms and chronic infection

    Get PDF
    We have become increasingly aware that during infection, pathogenic bacteria often grow in multi- cellular biofilms which are often highly resistant to antibacterial strategies. In order to understand how biofilms form and contribute to infection, in vitro biofilm systems such as microtitre plate as- says and flow cells, have been heavily used by many research groups around the world. Whilst these methods have greatly increased our understanding of the biology of biofilms, it is becoming increasingly apparent that many of our in vitro methods do not accurately represent in vivo conditions. Here we present a systematic review of the most widely used in vitro biofilm systems, and we discuss why they are not always representative of the in vivo biofilms found in chronic infections. We present examples of methods that will help us to bridge the gap between in vitro and in vivo biofilm work, so that our bench-side data can ultimately be used to improve bedside treatment
    corecore