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Abstract 

We have become increasingly aware that during infection, pathogenic bacteria often grow in multi-

cellular biofilms which are often highly resistant to antibacterial strategies. In order to understand 

how biofilms form and contribute to infection, in vitro biofilm systems such as microtitre plate as-

says and flow cells, have been heavily used by many research groups around the world. Whilst these 

methods have greatly increased our understanding of the biology of biofilms, it is becoming increas-

ingly apparent that many of our in vitro methods do not accurately represent in vivo conditions. Here 

we present a systematic review of the most widely used in vitro biofilm systems, and we discuss why 

they are not always representative of the in vivo biofilms found in chronic infections. We present ex-

amples of methods that will help us to bridge the gap between in vitro and in vivo biofilm work, so 

that our bench-side data can ultimately be used to improve bedside treatment.  



Introduction 

Bacteria were once thought to exist as single, free-floating planktonic cells that are community inde-

pendent. John William (Bill) Costerton changed this perception in the late 1970s when he observed 

surface associated microbial aggregates enclosed within a matrix of extracellular material, a phe-

nomena he later termed ‘biofilm’ [1,2]. Today, the biofilm phenotype has been identified in up to 

80% of all non-acute infections, including foreign-body related, otitis media, orthopaedic, catheter, 

chronic wounds and lung-related infections [3–7]. The interchange between planktonic and biofilm 

phenotypes, is believed, but not proven, to commonly manifest clinically as acute and chronic infec-

tions respectively.  

Acute infections tend to be fast spreading with a rapid onset. They are often controlled by the host 

immune response, and excessive intervention is not always required. However, if the host defences 

fail and therapeutic intervention is required, acute infections can usually be cleared within days [8]. 

Conversely, chronic infections are where there is a delay in the healing process (an inability of the 

injured site to restore anatomical and functional integrity), consistent with the severity of the injury 

[9]. The presence of biofilms and their innate ability to tolerate antibiotics up to 1000 times greater 

than planktonic cells, is thought to delay wound restoration [10–13]. Cells assuming the biofilm phe-

notype are commonly observed in patients with various underlying conditions, which can be system 

wide in the case of immunodeficiency and diabetes, or more focused in the case of venous leg ulcers 

and cystic fibrosis (CF). In the case of CF, chronic biofilm infections have been known to persist in 

the airways for over 30 years. Therefore, chronic infections are an ever increasing problem due to 

their recalcitrance towards extensive antibiotic treatment regimes and persistence under sustained 

attack from the host’s innate and adaptive immune response systems [10,14]. 

The treatment and management of patients suffering from chronic infections represents a significant 

monetary and labour intensive burden to healthcare providers. Recently, the direct costs of chronic 

infections, such as those affecting the dermis, were estimated to be in excess of $18 billion, affecting 

2 million residents in the United States alone, and resulting in 200,000 deaths annually [15]. This 

data relates to one country, and a single infected organ. If this is representative of other countries, 

and other conditions, then chronic infections represent a huge worldwide problem. A recent report on 

antimicrobial resistance (AMR), has stated that we can expect up to 10 million extra deaths annually 

worldwide by 2050 due to AMR [16]. The problem of chronic infection is only going to aid the rise 

of AMR.  

Much of our current knowledge about chronic infection comes from studying bacteria growing in 

test tubes. Costerton encouraged laboratories worldwide to deviate from studying planktonic cul-

tures, and instead, focus on understanding surface associated biofilms. This has become increasingly 

more relevant as we battle with the issues posed by AMR. We are becoming increasingly aware of 

significant differences that exist between in vitro biofilms grown in the laboratory, and in vivo 

biofilms found during actual infection. This raises the question as to whether the experiments that we 

currently perform in the laboratory are useful for understanding how bacterial biofilms form and 

contribute to AMR during infection.  



To understand the biology of infection better, we need another paradigm shift, a new wave of meth-

ods and experiments that better represent clinical conditions (of which biofilm formation is only one 

aspect). The use of some methods can potentially hamper our understanding of various aspects of 

infection, as they do not always accurately represent what we observe clinically. This review sum-

marises what we know about bacteria during infection, and how our current in vitro methods fail to 

represent such factors. In the following sections we discuss biofilms and polymicrobial interactions, 

particularly in the context of Pseudomonas aeruginosa as one of the most common opportunistic 

pathogens that causes chronic infection. We explore the differences between in vitro and in vivo ob-

servations, and discuss how to better bridge the gap between the two, increasing experimental accu-

racy so that our bench-side data can be used to improve bedside treatment.  

The role of biofilms during chronic infection 

Chronic infections persist despite apparently adequate antibiotic therapy, and in the face of the host’s 

innate and adaptive defence mechanisms. Chronic infections are characterised by persistent and pro-

gressive pathology, mainly due to the inflammatory response surrounding in vivo biofilms [17]. This 

biofilm lifestyle appears to impair the host’s ability to combat the infectious agent. The innate im-

mune response in the form of recruitment of neutrophils and their inability to break through the 

biofilms defence has been specifically examined [18–21]. Polymorphonuclear leukocytes (PMNs) 

are recruited in large numbers to the infection site, and during acute infection, are able to phagocy-

tize and remove most of the infectious agent [3,18]. When PMNs fail to eradicate an infection, it is 

most likely because a biofilm has been established. In the biofilm state, the enclosing matrix of ex-

tracellular substances is capable of protecting underlying cells from the immune system, such as 

PMN phagocytosis [22,23]. In addition to this, biofilms are capable of suppressing the antimicrobial 

action of PMNs through the production of various virulence factors [19,24]. P. aeruginosa growing 

in biofilms has been shown to actively kill PMNs through the secretion of rhamnolipids which re-

duce the host’s ability to clear infection [25]. 

In contrast to acute infections, which are usually treatable by traditional antibiotics, biofilms are 

known to tolerate antibiotic concentrations up to 1000 times higher than the minimal inhibitory con-

centrations (MIC). It is important to note that there are differences between antibiotic  resistance and 

tolerance, with many studies reporting the former when meaning the latter. Antibiotic resistance is 

where there is an increase in the MIC through mechanistic intervention. Conversely, little is known 

about antibiotic tolerance. There is often little change in the MIC of individual cells, however growth 

in populations can lead to an increasing tolerance to antibiotics. The cause of such increased toler-

ances seen in biofilms has been investigated in a number of different studies, focusing on the extra-

cellular matrix, the involvement of quorum sensing (QS), and the physiological factors observed 

within the biofilm [19,26–29]. The extracellular matrix itself has been shown to obstruct the diffu-

sion of some antimicrobial agents through both chemical and physiological means [27,30,31]. The 

matrix however is not selective against antimicrobial agents, and therefore the diffusion of many 

substances, such as oxygen, metabolites and waste products, can also be altered. Reduced diffusion 

in combination with high cell densities results in steep chemical gradients from the outer surface to-

wards the central core of an in vitro biofilm [26,32]. This causes a very heterogenic growth pattern 

throughout in vitro biofilms, which in turn influences regional tolerance towards different types of 

antibiotic treatments [33,34]. Tobramycin tolerance in P. aeruginosa has also been shown to be influ-



enced by QS-systems [19]. These studies have predominantly used in vitro systems in an attempt to 

explain the increased persistence and tolerance of biofilm cells towards varying antibiotic treatment 

regimens, and the failures of the host immune system to eradicate infection. However, such studies 

are very difficult to transfer directly to in vivo settings.  

Another observation of chronic infection, is the presence of multiple species within an infection site 

[35,36]. The milieu of species within a defined space may result in cooperation and/or conflict with 

other community members [37–39]. This creates a complex environment where species align along 

different nutrient gradients, be those host derived or the result of species interactions, as seen be-

tween P. aeruginosa and Staphylococcus aureus in chronic wounds  [40–42]. The complexity of in-

teractions between species may be enhanced through the production of diverse QS signals within the 

infection site, which have inter- and intra-species effects, although this is yet to be demonstrated in 

vivo [43–45]. One thing of note, is the lack of evidence supporting multi-species biofilms during in-

fections, whereby species grow concomitantly within the same biofilm, however the presence of 

multiple species within an infection site is well documented.    

In vitro investigation of biofilms 

During the last three decades, biofilms of pathogenic species have been extensively studied by a 

wide range of research groups, each with differing objectives, but all with the same overall aim – to 

expand our knowledge of biofilms to better understand infection. Using continuous flow-cell condi-

tions and Confocal Laser Scanning Microscopy (CLSM), we are closer to understanding the process-

es involved in the initial attachment of cells to surfaces in vitro [46–48]. Combining molecular tech-

niques with CLSM to construct and visualise knock-out strains of bacteria, has shown the contribu-

tion of motility and QS to biofilm development [30,33,46,47,49].  

The development of low cost, high throughput biofilm screening methods in microtitre-plates, have 

made it possible to identify genes essential for surface-attached biomass production in liquid media 

[50,51]. This system has been heavily used to identify potential anti-biofilm agents, by measuring the 

reduction in surface attached biomass on the sides of wells after treatment with potential therapeutic 

agents [51–54]. In addition to this, The Center for Disease Control (CDC) approved biofilm reactor 

[55–57], and drip flow reactors, have proved excellent for assessing biofilm formation on biological 

and non-biological materials [58–60]. These flow systems and microtitre assays are the workhorses 

of in vitro biofilm research, and have generated a phenomenal amount of data that has greatly ex-

panded our knowledge about how bacteria attach and differentiate into mature biofilms in vitro. 

The commonality between these methods is the growth of biofilms on abiotic surfaces, that are sub-

merged in media, and exposed to fluid dynamics of varying degrees. Experiments in these systems 

are able to produce biofilms of high cell density with a topography that can reach up to several hun-

dred µm thick. Under continuous flow cell conditions, the emergence of mushroom structures and 

water channels occur after only a couple of day’s growth (Figure 1) [46,47]. A key question is 

whether we are able to transfer our in vitro knowledge from the laboratory bench to the patient bed-

side, and the last decade has provided us with refined techniques that allow us to gain insight into 

what is actually occurring within certain types of infection.  



With advanced microscopy techniques, we are now able to see how bacterial cells organise them-

selves in chronic infections in ex vivo samples. As with the majority of biofilm research, there has 

been considerable focus on infection in patients with CF. In ex vivo lung tissue infected with the ma-

jor CF pathogen P. aeruginosa, much of the bacterial biomass is found as a biofilm within the 

bronchial lumen. Interestingly, these biofilms have not been found attached to the epithelial surface, 

but are found as non-attached biofilm aggregates that are embedded in the highly inflamed mucus 

[3,21] (Figure 2). Lying completely surrounded by immune cells, mainly PMNs, these aggregates 

range in size from 4 µm – 100 µm in diameter [3,20]. The same mode of non-attached aggregated 

biofilm growth have been observed in other types of infection, such as those found in chronic 

wounds, otitis media, and soft tissue fillers [4,5,61]. 

A glaring discrepancy between ex vivo observations and the in vitro biofilm, is the absence of a sur-

face. In all of the infections mentioned above, attachment to a surface or the epithelia is rarely ob-

served. However, the majority of primary in vitro models for biofilm infection have surface attach-

ment as a crucial component. Recent studies have shown how P. aeruginosa non-attached biofilm 

aggregates form in liquid batch cultures, and that they have the same characteristics as surface at-

tached biofilms when it comes to antibiotic tolerance and resilience towards PMNs [62,63]. The ab-

sence of such surfaces in surface wounds means the bacterial cells assume a biofilm lifestyle within a 

self-contained aggregate, devoid of surface attachment [64,65]. There have been a number of in vitro 

studies that have observed steep chemical gradients (notably oxygen) throughout biofilms, which 

leads to a heterogenic growth pattern [26,32]. The complex environment inside inflamed mucus 

seems to govern the growth pattern in biofilms in a different way. When the growth rate of aggregat-

ed bacteria within mucus is measured, a heterogenic growth pattern is observed, due to large regional 

variations between aggregates which can be linked to the local concentration of PMNs [21]. Mea-

surements of expectorated sputum from CF patients with a P. aeruginosa infection, demonstrates a 

micro-aerophilic environment as a result of oxygen consumption by PMNs [66]. These findings 

point towards immune cells playing a central role in regulating the growth of bacterial cells as they 

grow in aggregates, at least during infection in the CF lung. Crucially, immune cells are absent in 

almost all in vitro systems.  

Some prominent biofilm infections do involve the “characteristic” attachment and growth of biofilm 

cells on a surface. Chronic foreign body infections of implants, stents and catheters, result in bacteri-

al cells colonizing abiotic surfaces, leading to biofilm formation [67–69]. Catheters have been shown 

to constitute an environment whereby bacterial infections are able to develop into very thick biofilms 

[67,68,70]. Therefore, catheter associated biofilms are an example of a biofilm that most resembles 

the flow of media over a surface, and are most similar to CDC reactors, drip flow and flow cell sys-

tems. There are still some striking differences. For example, the type of structures observed and the 

level of organization seen in flow cells, are not present in catheter related biofilms, and mushrooms 

structures are almost never observed. Other differences include the liquid flowing over the surface. 

During in vitro biofilm growth, well-defined minimal medias are most often used [49,56,57,71,72]. 

In catheters, the liquids flowing over the surface could be urine, blood or other bodily fluids, which 

constitutes a very different growth environment for bacteria. In many other biofilm infections, there 

is a distinctive lack of flow within the infection site [20]. However, the lack of a flow does not re-

strict the bacteria from creating a biofilm. For example, P. aeruginosa is capable of biofilm forma-

tion deep within the dehydrated mucus of the CF lung, or in the inflamed pus of chronic wounds 

[73,74]. 



The pros and cons of each of these methods are listed in Table 1. Many of these methods produce 

clear and well defined results, due in part to our ability to control experimental parameters with a 

high degree of stringency, whilst concomitantly allowing single variables to change. This allows us 

to study the effects of single elements on various aspects of biofilm growth. This reductionist ap-

proach has yielded great information about complex cell matters such as metabolism, resistance 

mechanisms, and signalling pathways. However, such a simplistic approach is not always possible 

during in vivo methodologies, due to natural variations between living organisms.  

In vivo investigation of biofilms 

More recently, the advent of in vivo methods have increased our understanding of biofilms during 

chronic infection. There are a range of in vivo models that simulate chronic infections, such as sur-

face wounds [75,76], subcutaneous wounds [77,78], implant-related (such as catheter, orthopaedic, 

and dental) [79–83], otitis media [84–86], and CF [87–90] to name but a few. As with all models, 

some are deemed more applicable than others. For instance, porcine models lend themselves greatly 

to the study of chronic wound infections due to similarities of the immune response systems, spatial 

structuring within tissue, and wound healing processes (re-epithelialisation, scarring, and tissue 

granulation) [91,92]. The complexities within in vitro biofilms such as structure, gene regulation, and 

the production of virulence factors, has been elucidated for many problematic opportunistic 

pathogens. However, during in vivo chronic infection, there is a complex interplay between host and 

pathogen, which is not easily replicated in vitro, and leads to observable differences between in vitro 

and in vivo “chronic infections”.  

The in vivo biofilm differs from its in vitro counterpart, in both size and “shape”. A meta-analysis on 

the size of in vivo biofilms from chronic infections by Bjarnsholt and colleagues (2013) [20], showed 

them to have an upper size limit of 200 µm, which can be superseded in the presence of abiotic sur-

faces (e.g. catheters) leading to biofilms in excess of 1000 µm. Such observations differ drastically to 

the swathes of biofilm growth (up to several cm2) observed using in vitro methods [49]. It is thought 

that size limits placed on in vivo biofilms are the result of limiting factors, once thought to be nutri-

ent based, but evidence points to oxygen depletion in the local environment [93]. In addition, biofilm 

“shape”, or more accurately the 3D structure, is different under in vitro conditions, with the charac-

teristic mushroom structures of P. aeruginosa biofilm formation, yet to be observed in vivo. 

Following periods of trauma, the natural microbial flora may develop into antagonistic biofilms and 

a state of chronicity. In vivo models of chronic infection require artificial inoculation, usually at an 

inflated concentration, and with the aid of foreign bodies, so that the inoculation is not cleared by the 

host immune system [82,94,95].  

Another difference between many in vivo studies and actual in vivo infections, is the potential for 

multiple species to be present within the latter. A meta-analysis of 454 wound biofilms by Peters and 

colleagues from diabetic patients identified more than 1600 unique bacterial species, with diversity 

similar to that of the patients natural skin flora [35,96]. The presence of two or more unique bacterial 

species is observed in more than 80% of wounds analysed, with a relatively large proportion (30%) 

containing five or more species. Other studies place diversity higher, with an average of 5.4 bacterial 



species per chronic wound [36]. Such degrees of species diversity are also observed in the CF lung, 

resulting from the diverse microenvironments that arise [97–100]. Conversely, Kirketerp-Moller and 

colleagues (2008) [5] struggled to identify multiple species during a venous leg ulcer study, high-

lighting the diversity and complexity of different types of chronic infection. For instance, P. aerugi-

nosa is known to grow in the deeper recesses of chronic leg ulcers, compared to S. aureus, which is 

found on the surface [42]. This non-random distribution suggests some species, especially anaerobes 

in deep recesses, will be missed if the wrong sampling method is employed. Therefore, an all-en-

compassing, biopsy-based extraction and molecular identification, should be employed to allow a 

thorough investigation of species within an infection site.  

This degree of diversity within an infection site may result in a range of species-species interactions 

that have the potential to be both beneficial and antagonistic. For instance, Haemophilus influenzae 

and Moraxella catarrhalis grown concomitantly in an otitis media Chinchilla model, show an in-

creased tolerance towards antimicrobial agents and the host’s response system [101]. In other mod-

els, differences are also observed. For instance, co-colonisation of two common CF pathogens (P. 

aeruginosa and Burkholderia cenocepacia) in a murine CF model leads to a mutualistic relationship, 

whereby P. aeruginosa persists, and B. cenocepacia alters the inflammatory response [102]. In some 

instances, the presence of multiple species within a specified environment is a necessity. For in-

stance, during colonization of the oral cavity, primary colonisers (such as Candida albicans) allow 

the attachment of other species (such as Streptococcus spp.), facilitating the temporal co-aggregation 

of cells [103]. Should one of the primary colonisers be absent, co-aggregation will cease. Whilst 

highlighting the need to study multi-species infections, it also suggests that we need to incorporate a 

diverse range of species into experiments. It is important to re-iterate that the presence of multiple 

species within a system (such as an infection or test tube) does not mean they form a multi-species 

biofilm, which has not been observed to date. Therefore, it may be best to think about such systems 

as “battlefields”, with species not directly mixing, but residing within their own ecological space.  

Whilst some species act synergistically with others through metabolite and signal production, and/or 

direct contact, some species have been observed to diversify without the need for multi-species inter-

actions. For instance, during CF lung infection, P. aeruginosa gradually evolves, adapting to the CF 

lung through structural and dynamic changes over time that reduce virulence, and increase chronicity 

through a phenotypically heterogeneous population [104]. Interestingly, seemingly homogenous sub-

populations of P. aeruginosa in the CF lung show large variation for many key aspects of infection, 

such as antibiotic tolerance, QS and virulence factor production [105–108]. Such diversity between 

and within species, may alter the pathogenicity of the infection, infection persistence, impact on the 

host and antibiotic resistance and tolerance.  

To better understand the effects of biofilm infections on wound healing, both murine and rodent 

models have been devised [109,110], however there remains a disparity in their effectiveness due to 

the differences seen during wound healing in humans. As mentioned previously, porcine models can 

provide increased translational data for delayed wound healing in light of biofilm infection due to 

similar dermal properties (re-epithelialization, scarring, hair follicle placement and abundance), 

however their accessibility is more restrictive and expensive than that of murine/rodent models [111]. 

Implant models are a great way to blur the lines between in vitro and in vivo biofilms through the 

presence of an abiotic surface. Comparing in vivo models where an abiotic surface is present to in 



vitro biofilms, results in very similar biofilms (size, shape, and thickness) [20]. There are a range of 

in vivo models for chronic lung infection, however most require the require the bacterial cells to be 

well established on agar/agarose sheets or attached to the surface of alginate beads [95]. A murine 

model whereby cells are inhaled, has been developed to circumvent the need for various inoculation 

implants, whilst concomitantly allowing the upper and lower respiratory tract to be investigated 

[112]. Further to this, and more importantly, the model allows for persistence and adaptation of cells, 

similar to that observed in chronic infections, which includes evolutionary dynamics. The range of in 

vivo methods, along with their pros and cons have been summarised in Table 2.   

In vivo conditions, in vitro methods 

  

Sometimes it may not be ethical, practicable, or feasible to conduct in vivo experimentation. Given 

the issues highlighted previously, how can we better represent in vivo conditions in our in vitro mod-

els? It is widely known, for P. aeruginosa at least, that different nutritional cues result in altered 

biofilm formation, virulence, motility, and QS [46,113–117]. These differences become increasingly 

important when factors of clinical relevance, such as virulence and antimicrobial tolerance, are al-

tered [13,118,119]. Nutritional cues similar to those of expectorated CF sputum have been incorpo-

rated into a synthetic CF sputum media (SCFM) that approximates P. aeruginosa gene expression to 

that observed in expectorated CF sputum [120]. Two noteworthy points of this study are (i) the lack 

of key components observed in CF sputum (notably DNA, fatty acids, N-acetyle glucosamine, and 

mucin) and (ii) the inability of the methods used (RNA-seq) to correctly predict fitness requirements 

[121–127]. A follow up study rectified these issues, incorporating these components into SCFM. Us-

ing Tn-seq (which is a more precise way to measure fitness, compared to RNA-seq), it was shown 

that near identical selection pressures exist between synthetic and expectorated CF sputum [128]. In 

a separate study, the use of an artificial sputum media was shown to increase diversity within a popu-

lation, something not observed in Lysogeny Broth (LB) [108]. This diversity increased in the pres-

ence of certain antibiotics at sub-inhibitory concentrations, highlighting the need for effective clear-

ing of cells. Whilst the use of specialized media will not replace in vivo techniques, any way in 

which we can manipulate cells to generate increased diversity as seen during in vivo experiments, 

may result in findings that have increased clinical relevance.  

Similarities have been observed in the active biosynthetic pathways of P. aeruginosa in the CF lung 

and murine surgical wound infections [127]. This suggests that (i) catabolite metabolism is shared 

between certain infection sites and (ii) other factors, such as host-inflammatory responses, may be 

the cause of infection chronicity. In light of this, it might be better to think of SCFM, not as a syn-

thetic sputum media, but a synthetic infection media (SIM), which could then be supplemented fur-

ther to better replicate the nutrient environment of in vivo conditions. For example, surface wounds 

contain high concentrations of both host-derived serum proteins and the fibrous extracellular matrix 

protein; collagen [129,130]. The presence of such compounds in growth media is known to reduce 

biofilm formation for a range of clinically relevant organisms, including P. aeruginosa and S. aureus 

[131–133]. The problem with such observations is that the experiments were performed using the 

microtitre assay, which does not take into account the possibility that attachment (to abiotic surfaces) 

might be the cause of such observations, and which under many in vivo conditions has little rele-

vance. Such observations may also suggest why surface attachment (to biotic surfaces) is not gener-

ally observed in vivo, and why complex 3D structures do not develop.  



In vitro techniques are widely criticized for their incorporation of abiotic surfaces, which only have 

clinical relevance to a small number of implant-related infections [67–69]. However, the widespread 

use of abiotic surfaces is not surprising due to the difficulties of trying to mimic the complex multi-

cellular topology of an in vivo surface. The easiest way to negate these complexities is to employ sur-

face independent methodologies, which have been shown to produce biofilms of equal size, shape, 

and antimicrobial tolerances to those observed in vivo [62,133,134]. Whilst these methods produce in 

vivo biofilms under in vitro conditions, they lack the complex 3D topology and spatial structure of 

host tissue, which will alter a range of factors from antimicrobial to nutrient and oxygen penetration 

[21,135,136].  

Negative effects asserted on biofilm formation by serum proteins are also observed for antibiotic 

penetration in tissue samples [136]. As mentioned previously, bacteria are capable of occupying dif-

ferent ecological niches within a wound environment [42]. Growth of different methicillin-resistant 

Staphylococcus aureus (MRSA) strains on porcine nasal epithelium tissue resulted in three different 

growth profiles, highlighting the need to select strains with clinical relevance [137].  A large over-

sight of some in vitro biofilms which relate to CF lung infections, is the use of the P. aeruginosa ref-

erence strain PAO1. The lack of alginate production in PAO1 makes it difficult to gauge the rele-

vance of these studies to CF lung infections. Whilst non-mucoid strains might be present in the CF 

lung, infection with P. aeruginosa is characterized in many instances by the presence of this mucoid 

phenotype. However, as one of the most studied P. aeruginosa strains, its use has been exemplary in 

identifying and understanding complex regulatory pathways. If we are to use clinical isolates more 

readily in experiments, these must be chosen with care. Recent studies have shown that in CF infec-

tions, although there may be only one infection clone of P. aeruginosa (eg: The Liverpool Epidemic 

Strain, LES), the population of LES can be highly phenotypically diverse [105,138]. More recently, 

population analysis of the LES, has identified the commonality of divergent sub-lineages and their 

co-existence, allowing them to exchange potentially adaptive mutations [138] . Put simply, which of 

these LES isolates would you select to be your choice as ‘the’ LES strain? In this instance, one op-

tion is to consider working with ‘populations’ of P. aeruginosa taken from a sputum sample rather 

than taking a single colony from a plate. We also wish to highlight the clinical ramifications of such 

diversity, especially during antimicrobial therapy, whereby sub-inhibitory concentrations can drive 

diversification which may affect the patients clinical outcome [108]. The extensive use of antibiotic 

“cocktails” during CF-lung related infections highlights the need to take diversification of popula-

tions seriously, and not rely on a single clone or strain.  Combining this information, it might be 

more relevant to utilise clinical isolates from early infections, in a representative media with a clini-

cal antibiotic treatment regime, thus allowing us to study the diversification process and how it im-

pacts various aspects of disease.  

If we wish to mimic the in vivo environment, then the use of ex vivo samples provides us with new 

opportunities [92,137,139–142]. By using ex vivo tissue samples with in vitro methods and synthetic 

media, it may be possible to create controlled environments similar to those seen in vivo. Whilst 

many factors, most importantly an immune response, remain absent, the replacement of an abiotic 

surface with a biotic one will allow the growth and study of biofilms similar to those seen in vivo. 

Each of these systems which attempt to bridge the knowledge gap between in vivo conditions and in 

vitro methods are summarised in Table 3.   



Conclusion and recommendations 

To date, most of our mechanistic knowledge and hypotheses surrounding biofilm formation and how 

this relates to chronic infection is based upon in vitro observations, primarily through the use of mi-

crotitre plate assays and flow cell systems. These systems have greatly enhanced our knowledge 

about the mechanisms of how cells attach to surfaces and differentiate into multicellular biofilms. 

However, it is becoming increasingly apparent that many of our in vitro methods do not accurately 

represent in vivo conditions, and so may provide only limited information that has any clinical rele-

vance. Whilst this should come as no surprise, due to the innate complexity of biological systems, it 

highlights the need for better representation of the in vivo condition during in vitro investigation. At 

present, many in vitro studies contain (i) unrepresentative nutrients, (ii) uncharacteristic nutrient 

flow, (iii) uncharacteristic surfaces, and (iv) unrepresentative microorganisms. Whilst there is no 

“gold-standard” for the study of in vivo and in vitro biofilm formation, it is crucial to know the limit-

ing factors of selected models so as to not over-extrapolate data, and generate assumptions beyond 

the capabilities of the model.  

It is known that different nutrients alter the way in which bacterial cells grow. The use of synthetic 

media, which better represents the composition of in vivo exudate should be considered to produce 

data of increased clinical relevance. Other aspects of an in vivo micro-environment are more difficult 

to manipulate, such as the creation of oxygen gradients and a host immune response.  

As a research community, we have examined mono-species cultures extensively, systematically, yet 

not exhaustively, and whilst a leap into polymicrobial research might seem counter intuitive (when 

multiple aspects of mono-culture are not fully understood), it presents itself as the next logical step. 

With the majority of chronic infections harboring polymicrobial communities, interactions between 

different species may critically influence various factors associated with chronic infection such as 

virulence and AMR. Another issue that we raised is the use of reference strains. Such strains present 

researchers with a well-defined system which creates some reproducibility of research between labo-

ratories. However, the relevance of these strains to isolates taken directly from infection is often un-

clear and we should consider whether there is always a clinical relevance to work performed using 

reference strains. We also know that clinical isolates taken from the same patient can show consider-

able phenotypic diversity and so there may be a need to use ‘populations’ of bacteria taken from an 

infection to more accurately study biofilms and infection.  

Rome was not built in a day. We cannot expect immediate paradigm shifts in the way experiments 

are performed, nor do we know how to either. Precise experiments using well defined media and ref-

erence strains remain of considerable importance in elucidating mechanisms which might be impor-

tant for biofilm formation and virulence during infection. The use of representative species, in con-

junction with other representative species (creating a poly-microbial “infection”), in media that is 

representative (such as synthetic sputum media), with representative surfaces (such as an ex vivo tis-

sue sample), will likely produce data that is more relevant to in vivo infections. Finally, as biologists, 

we should not be afraid of performing, and being more accepting of, ‘dirty’ experiments. These are 

experiments where we have less control and stringency, and where some aspects are not 100% stan-

dardised. We suggest that this would be a positive way forward in helping us to understand the biol-

ogy of infection better. 
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Figure legends 

Figure 1. Confocal laser scanning micrographs of 2-day-old (A), 3-day-old (B) and 4-day-old (C) 

biofilms formed by a P. aeruginosa wild-type strain in a continuous flow cell system.  The central 

images show top-down views, and the flanking images show vertical optical sections. The bars rep-

resent 10 µm (A) and 20 µm (B and C). Bjarnsholt, unpublished. 

Figure 2. Micrograph of P. aeruginosa infected lung tissue from a patient with cystic fibrosis. Light 

and fluorescence microscopy images (170× magnification) of PAS hematoxylin-stained (A, B) and 

PNA FISH-stained (C, D) sections containing luminal and mucosal accumulations of inflammatory 

cells. The P. aeruginosa-positive areas are seen as well-defined lobulated clarifications surrounded 

by inflammatory cells. Red arrows indicate PMNs and green arrows indicate P. aeruginosa biofilm 

aggregates [21]. 

Table 1. Comparison of different model systems for studying biofilms in vitro. 

Table 2. Comparison of different model systems for studying biofilms in vivo. 

Table 3. Methods that better represent in vivo conditions during in vitro investigation 
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Method Description Pro’s Con’s Ability to reflect chronic 
infections

References

Microtitre 

assay/ 

Calgary 

model

Test the buildup of 

biomass on pegs 

or the sides of 

wells filled with 

static media

• Very high throughput 

screening 

• Cheap and simple 

methodology

• Does not differentiate 

between matrix, living and 

dead cells attached to the 

surface

• Large biological variations 

between wells

• Does not reflect any environment observed in 

the human body
• Surface attachment is only found in foreign 

body infections
• Does not reflect complex oxygen and nutrient  

gradients found in infections
• Missing immune response

[50,51]

CDC Reactor Test biofilm growth 

on disks spinning 

around in a 

chemotactic media 

• Able to test biofilm growth 

on diverse types of material

• Tablets can be removed for 

microscopy and CFU 

counting

• High reproducibility 

• High sear forces on the disk 

may remove biomass 

• Surface attachment is only found in foreign 

body infections

• Does not reflect complex oxygen and nutrients 

gradients found in infections

• Missing immune response. 

[56,59]

Continuous 

Flow Cell 

System  

Growth of biofilm 

on glass supplied 

with a continuous 

flow of low carbon 

content media

• Enables structural analysis 

of biofilm growth by CLSM

• Biomass can be quantified 

by microscopy  

• Produces 20-100 μm thick 

highly structured biofilms

• Complex & expensive 

system which requires a 

CLSM

• Media most often used are 

well defined minimal 

medias 

• Low reproducibility and high 

variations within same 

chamber

• Labor and time consuming

• May reflect some infections such as urinal 

infections

• The structural ‘mushroom’ biofilm seen in flow 

cells have never been observed during 

infection

• Does not reflect complex oxygen and nutrients 

gradients found in infections

• Missing immune response

[72,143]

Drip Flow 

Reactor

Drops of media 

continuously 

feeding the growth 

of biofilms on an 

object glass placed 

at an angle   

• Very high yield of biofilm

• May be used both for direct 

microscopy, CFU counting 

or transcriptomic analysis  

• Produces several 100 μm 

thick biofilms

• High sear forces in the drip 

area of impact

• Very messy and varying 

biofilm

• Uses large volumes of 

media

  

• Surface attachment is only found in foreign 

body infections

• Does not reflect complex oxygen and nutrients 

gradients found in infections

• Missing immune response.

[57,58]



Method Descrip-on Pro’s Con’s Ability	to	reflect	Chronic	

infec-ons

References

Porcine	

models

Especially	used	to	

simulate	chronic	

wounds

• Similar	immune	response	to	

skin	infec8ons	

• Similar	skin	structure	

• Large	skin	surface	

• Very	expensive	

• Space	consuming	

• Opportunis8c	pathogens	may	

vary		

• Ethical	considera8ons		

• Closely	related	to	human	wound	

healing	
• Immune	response	towards	very	similar	

to	human	
• Are	able	to	reflect	complex	oxygen	and	

nutrients	gradients	found	in	

infec8ons

[91]

Murine	

models	

Have	been	used	for	

chronic	wounds,	CF	

and	foreign	body	

infec8ons	

• Less	expensive	than	porcine	

• Small	space	needs	

• Fast	genera8on	8me		

• Very	hard	to	maintain	chronic	

infec8ons	

• High	metabolism		

• Ethical	considera8ons		

• Murine	models	have	a	very	different	

immune	response	compared	to	

humans	

Most	infec8ons	clear	fast.	

• Needs	modified	environment	(implant,	

inserted	beads	etc.)	or	a	reservoir	(via	

natural	inhalation)	to	facilitate	

prolonged	infec8on		

• Are	able	to	reflect	complex	oxygen	and	

nutrients	gradients	found	in	

infec8ons	

[79,82,86,109,112]

Other	rodents Rats,	rabbits,	

chinchillas	etc.	have	

been	used	as	o88s	

media,	catheter,	

osteomyeli8s	models		
• All	of	these	models	can	be	

excellent	to	examine	

infec8ons	in	complex	

environments	

• Specialized	models	(chinchilla	

o88s	media	model	or	Rabbit	

burn	would	model)	

• Expensive	and	labor	intensive	

• Ethical	considera8ons	

• Very	considerable	

reserva8ons	as	to	how	

closely	they	resemble	

human	infec8on		

• Rodents	generally	have	much	higher	

metabolism	and	pulse	compared	to	

humans	

• Rodent	models	have	a	very	different	

immune	response	compared	to	

humans	

• Implant	infec8ons	show	much	the	

same	biofilm	buildup	as	observed	

on	infected	human	implants		

• Are	able	to	reflect	complex	oxygen	and	

nutrients	gradients	found	in	

infec8ons			

[81,144,145]



Method Description Pro’s Con’s Ability to reflect Chronic 
infections

References

Synthetic CF 

sputum media 

and artificial 

sputum media

SCFM has been 

developed to mimic 

the chemical 

composition of 

expectorate from 

CF patients  

• Closer to the chemical 

environment found in the CF 

infection than standard 

medias

• P. aeruginosa exhibits similar 

growth and transcriptomic 

patterns as observed in ex 

vivo samples 

• Capable of inducing diversity 

within a population of P. 

aeruginosa cells

• Only tells half the story, 

oxygen limitations seems 

very important in regulating 

bacterial growth and 

expression in CF infection

• Complex media 

• Reflect chemical environment when it comes to 

possible carbon sources  

• Induce similar pathogenic response from well-

known CF pathogens  

• Missing immune response.

[114,128]

Semi-solid 

gels

Growth of biofilms 

as non-attached 

aggregates floating 

in a semi-solid agar 

gel 

• Grows biofilm as non-

attached aggregates

• The agar gel can be 

supplemented with serum 

and/or blood to mimic 

infections

• Multi-species infections can 

be simulated in the gels 

• Oxygen gradient does not 

mimic most infections

• Reflects the non-attached nature of biofilms 

seen in most infections

• May not completely reflect the complex oxygen 

and nutrients gradients found in infections

• Missing immune response

[134]

The wound-

like medium Growth in a static 

medium of bovine 

plasma, blood cells 

and broth. 

Inoculated bacterial 

cells make the 

media coagulate, 

letting cells develop 

in to biofilm 

aggregates 

• Grows biofilm as non-

attached aggregates

• Similar chemical environment 

found in chronic wounds

• Multi-species infections can 

be simulated in the gels

• Oxygen gradient does not 

mimic most infections

• Relies on horse and bovine 

blood components which 

may vary from human  

• Incorporates many host components into the 

model

• Lacks real immune response 

[109]

Ex vivo  tissue 

samples Growth of biofilms 

in ex vivo tissue 

samples (such as 

porcine lung tissue)

• Grows biofilm in a spatially 

structured environment

• May be classified as a waste 

product so there are minimal 

ethical concerns

• Relatively high-throughput

• Requires a fresh supply of ex 

vivo tissue samples

• Incorporates a spatially structured environment 

with host components.

• Lacks real immune response

[92,137]


