33 research outputs found
Nearby Supernova Factory Observations of SN 2007if: First Total Mass Measurement of a Super-Chandrasekhar-Mass Progenitor
We present photometric and spectroscopic observations of SN 2007if, an
overluminous (M_V = -20.4), red (B-V = 0.16 at B-band maximum), slow-rising
(t_rise = 24 days) type Ia supernova in a very faint (M_g = -14.10) host
galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the
super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at
~9000 km/s. A high signal-to-noise co-addition of the SN spectral time series
reveals no Na I D absorption, suggesting negligible reddening in the host
galaxy, and the late-time color evolution has the same slope as the Lira
relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong
maximum in I-band and a diversity of iron-peak lines appearing in
near-maximum-light spectra. SN2007 if also displays a plateau in the Si II
velocity extending as late as +10 days, which we interpret as evidence for an
overdense shell in the SN ejecta. We calculate the bolometric light curve of
the SN and use it and the \ion{Si}{2} velocity evolution to constrain the mass
of the shell and the underlying SN ejecta, and demonstrate that SN2007 if is
strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of
a "tamped detonation" model appropriate for double-degenerate mergers, and
assuming no host extinction, we estimate the total mass of the system to be 2.4
+/- 0.2 solar masses, with 1.6 +/- 0.1 solar masses of nickel-56 and with
0.3-0.5 solar masses in the form of an envelope of unburned carbon/oxygen. Our
modeling demonstrates that the kinematics of shell entrainment provide a more
efficient mechanism than incomplete nuclear burning for producing the low
velocities typical of super-Chandrasekhar-mass SNeIa.Comment: 23 pages, 13 figures, 4 tables, emulateapj format; v2 fixed some
typos and added a reference; v3 included minor copy-editing changes + fixed
typos in Figure 9, Table 4; accepted to Ap
Hydrogen-poor superluminous stellar explosions
Supernovae (SNe) are stellar explosions driven by gravitational or
thermonuclear energy, observed as electromagnetic radiation emitted over weeks
or more. In all known SNe, this radiation comes from internal energy deposited
in the outflowing ejecta by either radioactive decay of freshly-synthesized
elements (typically 56Ni), stored heat deposited by the explosion shock in the
envelope of a supergiant star, or interaction between the SN debris and
slowly-moving, hydrogen-rich circumstellar material. Here we report on a new
class of luminous SNe whose observed properties cannot be explained by any of
these known processes. These include four new SNe we have discovered, and two
previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as
members. These SNe are all ~10 times brighter than SNe Ia, do not show any
trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods
of time, and have late-time decay rates which are inconsistent with
radioactivity. Our data require that the observed radiation is emitted by
hydrogen-free material distributed over a large radius (~10^15 cm) and
expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous
events can be observed out to redshifts z>4 and offer an excellent opportunity
to study star formation in, and the interstellar medium of, primitive distant
galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U
The KELT Follow-Up Network And Transit False-Positive Catalog: Pre-Vetted False Positives For TESS
The Kilodegree Extremely Little Telescope (KELT) project has been conducting a photometric survey of transiting planets orbiting bright stars for over 10 years. The KELT images have a pixel scale of ~23\u27\u27 pixel⁻¹—very similar to that of NASA\u27s Transiting Exoplanet Survey Satellite (TESS)—as well as a large point-spread function, and the KELT reduction pipeline uses a weighted photometric aperture with radius 3\u27. At this angular scale, multiple stars are typically blended in the photometric apertures. In order to identify false positives and confirm transiting exoplanets, we have assembled a follow-up network (KELT-FUN) to conduct imaging with spatial resolution, cadence, and photometric precision higher than the KELT telescopes, as well as spectroscopic observations of the candidate host stars. The KELT-FUN team has followed-up over 1600 planet candidates since 2011, resulting in more than 20 planet discoveries. Excluding ~450 false alarms of non-astrophysical origin (i.e., instrumental noise or systematics), we present an all-sky catalog of the 1128 bright stars (6 \u3c V \u3c 13) that show transit-like features in the KELT light curves, but which were subsequently determined to be astrophysical false positives (FPs) after photometric and/or spectroscopic follow-up observations. The KELT-FUN team continues to pursue KELT and other planet candidates and will eventually follow up certain classes of TESS candidates. The KELT FP catalog will help minimize the duplication of follow-up observations by current and future transit surveys such as TESS
The Exceptionally Luminous Type II-L SN 2008es
We report on our early photometric and spectroscopic observations of the
extremely luminous Type II supernova (SN) 2008es. With an observed peak optical
magnitude of m_V = 17.8 and at a redshift z = 0.213, SN 2008es had a peak
absolute magnitude of M_V = -22.3, making it the second most luminous SN ever
observed. The photometric evolution of SN 2008es exhibits a fast decline rate
(~0.042 mag d^-1), similar to the extremely luminous Type II-L SN 2005ap. We
show that SN 2008es spectroscopically resembles the luminous Type II-L SN
1979C. Although the spectra of SN 2008es lack the narrow and intermediate-width
line emission typically associated with the interaction of a SN with the
circumstellar medium of its progenitor star, we argue that the extreme
luminosity of SN 2008es is powered via strong interaction with a dense,
optically thick circumstellar medium. The integrated bolometric luminosity of
SN 2008es yields a total radiated energy at ultraviolet and optical wavelengths
of >10^51 ergs. Finally, we examine the apparently anomalous rate at which the
Texas Supernova Search has discovered rare kinds of supernovae, including the
five most luminous supernovae observed to date, and find that their results are
consistent with those of other modern SN searches.Comment: accepted to ApJ, 10 pages, 7 figures, 6 tables. Minor revisions,
conclusions remain unchange
Hubble Space Telescope spectra of the Type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙
Hubble Space Telescope spectroscopic observations of the nearby Type Ia supernova (SN Ia) SN 2011fe, taken on 10 epochs from −13.1 to +40.8 d relative to B-band maximum light, and spanning the far-ultraviolet (UV) to the near-infrared (IR) are presented. This spectroscopic coverage makes SN 2011fe the best-studied local SN Ia to date. SN 2011fe is a typical moderately luminous SN Ia with no evidence for dust extinction. Its near-UV spectral properties are representative of a larger sample of local events (Maguire et al.). The near-UV to optical spectra of SN 2011fe are modelled with a Monte Carlo radiative transfer code using the technique of ‘abundance tomography’, constraining the density structure and the abundance stratification in the SN ejecta. SN 2011fe was a relatively weak explosion, with moderate Fe-group yields. The density structures of the classical model W7 and of a delayed detonation model were tested. Both have shortcomings. An ad hoc density distribution was developed which yields improved fits and is characterized by a high-velocity tail, which is absent in W7. However, this tail contains less mass than delayed detonation models. This improved model has a lower energy than one-dimensional explosion models matching typical SNe Ia (e.g. W7, WDD1; Iwamoto et al.). The derived Fe abundance in the outermost layer is consistent with the metallicity at the SN explosion site in M101 (∼0.5 Z⊙). The spectroscopic rise-time (∼19 d) is significantly longer than that measured from the early optical light curve, implying a ‘dark phase’ of ∼1 d. A longer rise-time has significant implications when deducing the properties of the white dwarf and binary system from the early photometric behaviour
Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. We demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral properties of SLSNe-I at different spectral phases. We find that Mn II most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label
Clinical Potential of Regulatory T Cell Therapy in Liver Diseases: An Overview and Current Perspectives
The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes, that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg). The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients.Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment and Good Manufacturing Practice (GMP) facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases, chronic rejection and post-transplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases (GVHD) and solid organ transplantations. There have not been any new therapies for the autoimmune liver diseases for more than three decades; thus the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior and microenvironment of Treg before applying the cells to the patients
Absence of fast-moving iron in an intermediate type ia supernova between normal and super-chandrasekhar
The American Astronomical Society. All rights reserved.In this paper, we report observations of a peculiar SN Ia iPTF13asv (a.k.A., SN2013cv) from the onset of the explosion to months after its peak. The early-phase spectra of iPTF13asv show an absence of iron absorption, indicating that synthesized iron elements are confined to low-velocity regions of the ejecta, which, in turn, implies a stratified ejecta structure along the line of sight. Our analysis of iPTF13asv's light curves and spectra shows that it is an intermediate case between normal and super-Chandrasekhar events. On the one hand, its light curve shape (B-band ) and overall spectral features resemble those of normal SNe Ia. On the other hand, its large peak optical and UV luminosity (, ) and its low but almost constant Si ii velocities of about 10,000 km s-1 are similar to those in super-Chandrasekhar events, and its persistent carbon signatures in the spectra are weaker than those seen commonly in super-Chandrasekhar events. We estimate a 56Ni mass of and a total ejecta mass of . The large ejecta mass of iPTF13asv and its stratified ejecta structure together seemingly favor a double-degenerate origin. © 2016
Multiwavelength observations of the helium dwarf nova KL Dra through its outburst cycle
We present multiwavelength observations of the helium-dominated accreting binary KL Dra which has an orbital period of 25 min. Our ground-based optical monitoring programme using the Liverpool Telescope has revealed KL Dra to show frequent outbursts. Although our coverage is not uniform, our observations are consistent with the outbursts recurring on a time-scale of similar to 60 d. Observations made using Swift show that the outbursts occur with a similar amplitude and duration (2 weeks) at both UV and optical energies. Although KL Dra is a weak X-ray source, we find no significant evidence that the X-ray flux varies over the course of an outburst cycle. We can reproduce the main features of the 60-d outburst cycle using the disc instability model and a helium-dominated accretion flow. Although the outbursts of KL Dra are very similar to those of the hydrogen-accreting dwarf novae, we cannot exclude the fact that they are the AM CVn equivalent of WZ Sge-type outbursts. With outbursts occurring every similar to 2 months, KL Dra is an excellent target to study helium-dominated accretion flows in general