645 research outputs found
Nanomechanical Detection of Itinerant Electron Spin Flip
Spin is an intrinsically quantum property, characterized by angular momentum.
A change in the spin state is equivalent to a change in the angular momentum or
mechanical torque. This spin-induced torque has been invoked as the intrinsic
mechanism in experiments ranging from the measurements of angular momentum of
photons g-factor of metals and magnetic resonance to the magnetization reversal
in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic
nanowire produces a torque associated with the itinerant electron spin flip.
Here, we report direct measurement of this mechanical torque and itinerant
electron spin polarization in an integrated nanoscale torsion oscillator, which
could yield new information on the itinerancy of the d-band electrons. The
unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable
applications for spintronics, precision measurements of CP-violating forces,
untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Artificial boundary conditions for the linearized Benjamin-Bona-Mahony equation
International audienceWe consider various approximations of artificial boundary conditions for linearized Benjamin-Bona-Mahoney equation. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we derive explicit transparent boundary conditions both continuous and discrete for the linearized BBM equation. The equation is discretized with the Crank Nicolson time discretization scheme and we focus on the difference between the upwind and the centered discretization of the convection term. We use these boundary conditions to compute solutions with compact support in the computational domain and also in the case of an incoming plane wave which is an exact solution of the linearized BBM equation. We prove consistency, stability and convergence of the numerical scheme and provide many numerical experiments to show the efficiency of our tranparent boundary conditions
Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity
Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentamidine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects in these parasites. To further probe the roles of these transporters, we assembled a T. b. brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a very moderate growth defect in vitro, established infections in mice and recovered effectively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a carbon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melarsoprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that African trypanosome AQPs are dispensable for viability and osmoregulation but they make important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitivity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respiratory inhibitors described here might be exploited
Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine
Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study
Background
Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key determinant of growth failure in children in low- and middle-income populations. A theory-driven systems model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and systemic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort study that included children from eight countries.
Methods
Non-diarrheal stool samples (N = 22,846) from 1253 children from multiple sites were evaluated for a panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin. Among these same children, urinary lactulose:mannitol (L:M) (N = 6363) and plasma alpha-1-acid glycoprotein (AGP) (N = 2797) were also measured. The temporal sampling design was used to create a directed acyclic graph of proposed mechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of intestinal permeability and inflammation, systemic inflammation and change in length- and weight- for age in children 0–2 years of age.
Findings
Children in these populations had frequent enteric infections and high levels of both intestinal and systemic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, were associated with elevated biomarker concentrations of gut and systemic inflammation and, via these associations, indirectly associated with both reduced linear and ponderal growth. Evidence for the association with reduced linear growth was stronger for systemic inflammation than for gut inflammation; the opposite was true of reduced ponderal growth. Although Giardia was associated with reduced growth, the association was not mediated by any of the biomarkers evaluated.
Interpretation
The large quantity of empirical evidence contributing to this analysis supports the conceptual model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth mediated through systemic inflammation
Socio-cultural determinants of physical activity across the life course: a 'Determinants of Diet and Physical Activity' (DEDIPAC) umbrella systematic literature review
Objective
Regular physical activity (PA) reduces the risk of disease and premature death. Knowing factors associated with PA might help reducing the disease and economic burden caused by low activity. Studies suggest that socio-cultural factors may affect PA, but systematic overviews of findings across the life course are scarce. This umbrella systematic literature review (SLR) summarizes and evaluates available evidence on socio-cultural determinants of PA in children, adolescents, and adults.
Methods
This manuscript was drafted following the recommendations of the ‘Preferred Reporting Items for Systematic reviews and Meta-Analyses’ (PRISMA) checklist. The MEDLINE, Web of Science, Scopus, and SPORTDiscus databases were searched for SLRs and meta-analyses (MAs) on observational studies published in English that assessed PA determinants between January 2004 and April 2016. The methodological quality was assessed and relevant information on socio-cultural determinants and any associations with PA was extracted. The available evidence was evaluated based on the importance of potential determinants and the strength of the evidence.
Results
Twenty SLRs and three MAs encompassing 657 eligible primary studies investigated potential socio-cultural PA determinants, with predominantly moderate methodological quality. Twenty-nine potential PA determinants were identified that were primarily assessed in children and adolescents and investigated the micro-environmental home/household level. We found probable evidence that receiving encouragement from significant others and having a companion for PA were associated with higher PA in children and adolescents, and that parental marital status (living with partner) and experiencing parental modeling were not associated with PA in children. Evidence for the other potential determinants was limited, suggestive, or non-conclusive. In adults, quantitative and conclusive data were scarce.
Conclusions
A substantial number of SLRs and MAs investigating potential socio-cultural determinants of PA were identified. Our data suggest that receiving social support from significant others may increase PA levels in children and adolescents, whereas parental marital status is not a determinant in children. Evidence for other potential determinants was limited. This was mainly due to inconsistencies in results on potential socio-cultural determinants of PA across reviews and studies
Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia
Transanal endoscopic microsurgery versus endoscopic mucosal resection for large rectal adenomas (TREND-study)
Background: Recent non-randomized studies suggest that extended endoscopic mucosal resection (EMR) is equally effective in removing large rectal adenomas as transanal endoscopic microsurgery (TEM). If equally effective, EMR might be a more cost-effective approach as this strategy does not require expensive equipment, general anesthesia and hospital admission. Furthermore, EMR appears to be associated with fewer complications. The aim of this study is to compare the cost-effectiveness and cost-utility of TEM and EMR for the resection of large rectal adenomas. Methods/design. Multicenter randomized trial among 15 hospitals in the Netherlands. Patients with a rectal adenoma 3 cm, located between 115 cm ab ano, will be randomized to a TEM- or EMR-treatment strategy. For TEM, patients will be treated under general anesthesia, adenomas will be dissected en-bloc by a full-thickness excision, and patients will be admitted to the hospital. For EMR, no or conscious sedation is used, lesions will be resected through the submucosal plane i
- …
