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Abstract

Aquaglyceroporins (AQPs) transport water and glycerol and play important roles in drug-

uptake in pathogenic trypanosomatids. For example, AQP2 in the human-infectious African

trypanosome, Trypanosoma brucei gambiense, is responsible for melarsoprol and pentami-

dine-uptake, and melarsoprol treatment-failure has been found to be due to AQP2-defects

in these parasites. To further probe the roles of these transporters, we assembled a T. b.

brucei strain lacking all three AQP-genes. Triple-null aqp1-2-3 T. b. brucei displayed only a

very moderate growth defect in vitro, established infections in mice and recovered effec-

tively from hypotonic-shock. The aqp1-2-3 trypanosomes did, however, display glycerol

uptake and efflux defects. They failed to accumulate glycerol or to utilise glycerol as a car-

bon-source and displayed increased sensitivity to salicylhydroxamic acid (SHAM), octyl

gallate or propyl gallate; these inhibitors of trypanosome alternative oxidase (TAO) can

increase intracellular glycerol to toxic levels. Notably, disruption of AQP2 alone generated

cells with glycerol transport defects. Consistent with these findings, AQP2-defective, melar-

soprol-resistant clinical isolates were sensitive to the TAO inhibitors, SHAM, propyl gallate

and ascofuranone, relative to melarsoprol-sensitive reference strains. We conclude that

African trypanosome AQPs are dispensable for viability and osmoregulation but they make

important contributions to drug-uptake, glycerol-transport and respiratory-inhibitor sensitiv-

ity. We also discuss how the AQP-dependent inverse sensitivity to melarsoprol and respira-

tory inhibitors described here might be exploited.

Author summary

Protein channels in cell membranes transport specific molecules in and out of cells, and

can also facilitate drug-uptake. One such protein, known as an aquaglyceroporin (AQP),

allows parasitic African trypanosomes, the cause of lethal diseases in humans and live-

stock, to accumulate an arsenic-based drug known as melarsoprol. Unfortunately,
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parasites with a mutated AQP have resisted this drug and have spread, leading to treat-

ment-failure in>50% of patients in some areas. The functions of this particular AQP, and

two other similar AQPs normally expressed by these parasites, remain to be fully charac-

terised in trypanosomes. We therefore generated and characterised parasites lacking all

three AQPs. The cells grow well and, to our surprise, continue to effectively allow water to

flow in and out of the cell. Glycerol uptake and efflux are both perturbed, however. As a

consequence, drugs that cause these parasites to produce toxic quantities of glycerol are

more effective against parasites lacking the AQPs. Indeed, even the melarsoprol-resistant,

patient-derived parasites described above are more sensitive to these drugs. Our findings

not only reveal the relative contributions of the AQPs to glycerol transport, they also

point to therapies that could be more effective in the many patients infected by melarso-

prol-resistant parasites.

Introduction

African trypanosomes are parasitic protozoa and the causative agents of human and animal

African trypanosomiasis (HAT and AAT, respectively). These parasites are typically transmit-

ted by tsetse-flies, which are restricted to sub-Saharan Africa. HAT is typically fatal without

treatment, classified as a ‘neglected tropical disease’, and caused primarily by T. brucei gam-
biense (Western-Africa) but also by T. brucei rhodesiense (Eastern Africa). AAT is typically

caused by T. vivax, T. congolense or T. b. brucei, important veterinary and livestock pathogens;

T. b. brucei is a less-prevalent veterinary parasite and the favoured experimental sub-species.

Vaccine development is challenging and therapies suffer problems with toxicity, resistance,

cost, limited efficacy and difficulties with administration [1]. In addition, in the case of HAT,

diagnostic tools must define the stage of the disease if the appropriate therapy is to be selected

[1]. For treatment of the second stage for example, when parasites have entered the central

nervous system, the nifurtimox-eflornithine combination therapy is favoured [2]. The other

option is melarsoprol, but this is toxic [1]. Unfortunately, eflornithine is ineffective against

T. b. rhodesiense [3] so melarsoprol is currently the only option, despite its toxicity, against

advanced disease caused by this parasite.

Melarsoprol treatment-failure, in>50% of patients in some areas, has been reported for

both T. b. rhodesiense [4] and T. b. gambiense infections [5]. Melarsoprol-resistance can arise

due to reduced accumulation of drug, following aquaglyceroporin 2 (AQP2) mutation [6].

Both a trypanosome P2 adenosine transporter [7,8] and AQP2, an aquaglyceroporin with an

unusual arrangement of pore-lining residues comprising the ‘selectivity filter’ [9,10], contrib-

ute to melarsoprol-uptake; laboratory-engineered defects in these transporters render cells

melarsoprol-resistant. These cells also display cross-resistance to pentamidine [6], a drug used

to treat trypanosomiasis prior to central nervous system involvement. This may have little

impact in the clinic, however, because pentamidine remains effective at the high doses admin-

istered [11]. In terms of melarsoprol-resistance and treatment-failure, clinical isolates from

both the Democratic Republic of the Congo and South Sudan, dating back to the 1970s, display

AQP2-defects [12,13], and a clinical isolate was re-sensitised to both melarsoprol and pentami-

dine by the addition of an intact AQP2 gene [14]. A defect in a related Leishmania AQP has

been linked to widespread antimonial-resistant Leishmania infections in India [15].

There are three AQPs encoded in the T. b. brucei genome. AQP1 has been reported to local-

ise to the flagellar membrane in bloodstream-form cells [16], while plasma membrane localisa-

tion is indicated in insect-stage cells [17]. AQP3 displays a plasma membrane localisation in
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both bloodstream-form cells [9,16] and insect-stage cells [9]. AQP2, on the other hand, is

largely restricted to the flagellar pocket membrane in bloodstream-form cells, and then

becomes distributed more widely in the plasma membrane in insect-stage cells [9]. Heterolo-

gous expression of the T. b. brucei AQPs reveals their ability to transport water, mass: 18 Da;

ammonia, mass: 17 Da [18]; boric acid, mass: 62 Da [19]; glycerol, mass: 92 Da [20] and some

forms of trivalent arsenic, mass: 83–198 Da; and trivalent antimony, mass: 122–292 Da [21].

AQP2 gene-knockout in T. b. brucei reveals that this AQP can also specifically mediate uptake

of melarsoprol; mass: 398 Da, and pentamidine; mass: 340 Da [9,10]. These drugs have a sub-

stantially greater mass than other known AQP-substrates and recent evidence indicates that

pentamidine, rather than being a permeant, binds to and inhibits AQP2, suggesting that

uptake of this drug might require endocytosis [22].

To further probe AQP-function, we deleted all three T. b. brucei AQP genes from the T. b.

brucei genome. We found that trypanosomes tolerate the loss of all three AQPs. The triple

aqp1-2-3 null-strains, surprisingly, tolerated hypotonic shock, but were defective in glycerol

uptake, utilisation and efflux and, consequently, were sensitised to trypanosome alternative

oxidase (TAO) inhibitors that increase the intracellular glycerol concentration to toxic levels.

Notably, trypanosomes lacking only AQP2 were also defective in glycerol utilisation and efflux

and, as predicted by our T. b. brucei studies, clinical melarsoprol-resistant T. b. gambiense iso-

lates were also more sensitive to respiratory inhibitors relative to melarsoprol sensitive refer-

ence strains.

Results

T. b. brucei tolerates the loss of all three AQPs

T. b. brucei AQP1 (Tb927.6.1520) is on chromosome 6 and AQP2 (Tb927.10.14170) and AQP3
(Tb927.10.14160) are adjacent to each other on chromosome 10 (see Fig 1A). The AQP2-AQP3
locus is dispensable for growth [23]. AQP1 knockdown, using RNA interference was not asso-

ciated with any substantial growth-defect [16], but knockout of AQP1 has not, to our knowl-

edge, been attempted. T. b. brucei is diploid so we sequentially replaced the AQP1 alleles with

selectable markers (NPT and PAC) to determine whether AQP1 was dispensable (see Fig 1A).

We readily obtained aqp1-null strains, as confirmed by Southern blotting (Fig 1B).

We next devised a strategy to assemble triple aqp-null strains in a background that would

facilitate conditional expression of wild-type or mutant AQPs for complementation studies. In

order to recycle the limited number of selectable-markers available, we used a multi-step strat-

egy employing the meganuclease, I-SceI (see Materials and methods). Briefly, we set up strains

in the 2T1-background [24] in which meganuclease induction triggered the replacement of a

chromosomal knockout-cassette, bearing an I-SceI cleavage-site, with an allelic knockout-cas-

sette lacking an I-SceI cleavage-site. The cassette-integration and chromosomal allele-replace-

ment process was carried out for the AQP2-AQP3 locus and then repeated for the AQP1 locus,

such that the resulting strains bore a BLA-marker at both aqp2-aqp3 null alleles and an NPT-

marker at both aqp1 null alleles (Fig 1A). Southern blotting confirmed the absence of AQP1
(Fig 1B), AQP2 and AQP3 (Fig 1C) in the resulting aqp1-2-3 null strains. Thus, T. b. brucei tol-

erates the loss of all three AQPs.

The T. b. brucei AQPs have minimal impact on fitness or osmoregulation

We assessed fitness in cell-culture for the new aqp1 and aqp1-2-3 strains and compared these

to the wild-type and the previously described aqp2-3 strains [9]. The growth-curves indicated

a modest defect in the aqp1-2-3 strains and no apparent defect in the aqp1 or in the aqp2-3
strains (Fig 2A). The aqp1-2-3 strains were also able to establish infections in vivo in a mouse
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model; parasitaemia in all three mice was between 4 x 106 and 4 x 107 per ml of blood four

days after inoculation. These aqp1-2-3 strains also differentiated to the insect mid-gut stage

in vitro; equivalent to wild-type after one week in insect-stage growth-medium. Thus, we

observed only a modest fitness-defect in bloodstream-form cells in the absence of all three

AQPs but not in the absence of either AQP1 or AQP2-AQP3.

AQP2 specifically controls melarsoprol and pentamidine-uptake and has a particularly pro-

nounced impact on pentamidine-sensitivity in vitro [9]. Dose-response assays confirmed the

expected pentamidine-resistance in the aqp2-3 strains and indicated no additional resistance

in the aqp1-2-3 strains (Fig 2B); EC50-values were increased by approximately 30-fold relative

to wild-type in both cases. These results are consistent with the established specific role for

AQP2 in pentamidine (and melarsoprol) uptake and cross-resistance [9,12,23].

AQPs can transport water or small solutes. To explore the contribution of the T. b. brucei
AQPs to osmoregulation, we exposed cells to hypo-osmotic shock and monitored the

response. Under these conditions, cells swell rapidly and then, more slowly (10–20 min),

return to their original volume. We saw no, or only moderate, differences in the time taken

to recover for aqp1, aqp2-3 or aqp1-2-3 null-cells relative to wild-type trypanosomes (Fig 2C).

We conclude that the T. b. brucei AQPs have minimal impact on fitness or regulatory volume-

decrease after osmotic shock.

Glycerol uptake and utilisation are perturbed in aqp null T. b. brucei

We next assessed the ability of the aqp1-2-3 null T. b. brucei strains to use glycerol as a carbon-

source, which is possible in bloodstream form trypanosomes under aerobic conditions [25].

In preliminary experiments, aqp1-2-3 cells displayed sustained motility in 5 mM glucose and

Fig 1. T. b. brucei tolerates the loss of all three AQPs. (A) The schematic maps indicate the AQP1 and AQP2-3 regions replaced by selectable

markers as also indicated on the right. Δ indicates the regions deleted while the probes used for Southern blotting are shown above the maps. H, HpaI; S,

SacII. (B) The Southern blots indicate deletion of the AQP1 alleles in aqp1 and three independent aqp1-2-3 strains. Wild-type (WT) is shown for

comparison. Genomic DNA was digested with HpaI. (C) The Southern blots indicate deletion of the AQP2-3 alleles in aqp1-2-3 strains. WT is shown for

comparison. Genomic DNA was digested with SacII.

https://doi.org/10.1371/journal.ppat.1006307.g001
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fructose but these cells were immotile within 15-minutes in 5 mM glycerol. To quantify the

ATP-levels in cells incubated in 5 mM glucose or glycerol, we used a luminescence assay and

this confirmed that aqp1-2-3 cells were able to use glucose as a carbon-source but were unable

to utilise glycerol (Fig 3A). Since ATP-levels were significantly depleted (P<0.001) relative to

wild-type in aqp1-2-3 cells incubated in glycerol, we exploited this assay to assess the impact of

the various AQPs on glycerol utilisation; cells were harvested before they became immotile in

this assay so as to record quantitative differences among strains. As expected, ATP-levels were

not significantly diminished in any of the aqp-defective strains tested in glucose (Fig 3A). In

glycerol though, ATP-levels were significantly depleted (P<0.001) in aqp2, aqp2-3 and aqp1-2-
3 cells but not in aqp1 cells (Fig 3A). These results suggest that, among the AQPs, AQP2 makes

the greatest contribution to glycerol utilisation; this interpretation is supported by both effec-

tive utilisation of glycerol by aqp1 null cells and no increase in the glycerol-utilisation defect in

aqp2-3 cells relative to aqp2 cells.

Since glycerol utilisation does not directly reflect glycerol uptake, we next measured glyc-

erol uptake; in wild-type, triple-null and AQP2-complemented cells. The aqp1-2-3 cells

Fig 2. The T. b. brucei AQPs have minimal impact on fitness or osmoregulation. (A) Cumulative growth-curves for wild-type (WT), aqp1, aqp2-

3 and aqp1-2-3 null-strains. (B) Dose-response curves for pentamidine. (C) Hypo-osmotic shock assay. Open symbols, Earle’s salt buffer; filled

symbols, buffer diluted 50:50 with H2O. The recovery phase is shown. The phase-contrast images show two shocked and swollen cells (at left) and a

recovered cell (at right). Scale-bar, 5 μm. DNA was counter-stained with DAPI (blue).

https://doi.org/10.1371/journal.ppat.1006307.g002
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revealed almost complete ablation of glycerol-uptake (Fig 3B), consistent with minimal diffu-

sion of glycerol across the plasma membrane. AQP2 provided complementation of this defect,

albeit only partial (Fig 3B). Thus, AQP2 appears to make the greatest contribution to glycerol

utilisation but not the major contribution to glycerol uptake into the cell, possibly reflecting an

impact on transport into glycosomes, where glycerol is utilised [25].

T. b. brucei aqp-null cells display a glycerol efflux defect and respiratory

inhibitor-sensitivity

We next asked whether aqp-defective trypanosomes displayed glycerol-efflux defects as well as

the glycerol-uptake defects described above. Salicylhydroxamic acid (SHAM) increases intra-

cellular glycerol levels by inhibiting the trypanosome alternative oxidase (TAO) [26], a ubiqui-

nol oxygen oxidoreductase that is cyanide-insensitive and maintains redox balance as part of

the glycerol-3-phosphate oxidase system (see Fig 4A, left-hand panels). Consistent with a glyc-

erol-efflux defect, dose-response curves revealed that aqp1-2-3 null-cells were SHAM-sensitive

(EC50 decreased >7-fold) relative to wild-type cells (Fig 4A, right-hand panel: EC50 1.6 and

12 μM, respectively). SHAM plus glycerol rapidly kills bloodstream-form African trypano-

somes [27] (see Fig 4B, left-hand panel), but we predicted that the impact of added glycerol

would not be pronounced in glycerol-uptake defective aqp1-2-3 null-cells. Indeed, SHAM

dose-response curves generated in the presence of 10 mM glycerol (Fig 4B, right-hand panel)

revealed a substantial impact of glycerol against wild-type cells but only a very weak impact

against aqp1-2-3 null-cells; glycerol reduced SHAM EC50 values by 13 and 1.8-fold, respec-

tively; to 0.9 μM in both cases (compare Fig 4A and 4B). We also tested the additional TAO

inhibitors, propyl gallate and octyl gallate [28], against wild-type and aqp1-2-3 null-cells. Once

again, and consistent with a glycerol-efflux defect, dose-response curves revealed that aqp1-2-3
null-cells were TAO inhibitor sensitive relative to wild-type cells (Fig 4C); EC50 was reduced

by 4-fold and 5-fold, respectively.

Fig 3. Glycerol uptake and utilisation is perturbed in aqp-null T. b. brucei. (A) ATP levels were assessed in the strains indicated after incubation in 5

mM glucose or glycerol. Readings were taken in triplicate and normalised to substrate only. * indicates significantly different (P<0.001) to wild-type (WT)

using an ANOVA test in GraphPad Prism. Error bars, SD. (B) Radiolabelled glycerol uptake was assessed in the strains indicated. Readings were taken

in quadruplicate. * indicates significant difference (P<0.05) using a Student’s t-test. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1006307.g003
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Fig 4. aqp-null T. b. brucei display defective glycerol-efflux and respiratory inhibitor-sensitivity. (A) Bloodstream T.

brucei express a SHAM-sensitive mitochondrial trypanosome alternative oxidase (TAO). Under aerobic conditions, TAO

activity allows ATP production without glycerol production as indicated by the black lines (left-hand blue ‘cell’). SHAM blocks

TAO-activity, leading to the anaerobic production of glycerol, which is toxic if not removed, as indicated by the black lines

(right-hand blue ‘cell’). SHAM dose-response curves for wild-type (WT) and aqp1-2-3 null-cells. EC50 values are indicated.

Drug-sensitivity in T. brucei aqp-nulls
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Since our glycerol-utilisation assays indicated a defect in aqp2 null T. b. brucei, we next

asked whether these cells also displayed increased sensitivity to SHAM, consistent with a

glycerol-efflux defect. We also tested SHAM-sensitivity in aqp2-3 null cells and in aqp1-2-3
null cells re-expressing AQP2; re-expressed AQP2 was localised to the flagellar pocket (Fig

4D, right-hand side), as expected [9]. The full set of SHAM (plus glycerol) EC50 values are

shown in Fig 4D. SHAM-sensitivity was indeed observed in aqp2 null (2.4-fold) aqp2-3 null

(3.2-fold) and aqp1-2-3 null cells (see above); these cells were all significantly more sensitive

to SHAM than wild type (Fig 4D), and AQP2 re-expression effectively reversed SHAM-sen-

sitivity in the aqp1-2-3 null background (Fig 4D). Also, 10 mM glycerol reduced SHAM EC50

values to <1 μM in all cell types and this reduction was significant in all but the aqp1-2-3 null

cells (Fig 4D), again consistent with almost complete ablation of glycerol transport in the lat-

ter case only.

Melarsoprol-resistant clinical isolates display respiratory inhibitor-

sensitivity

TAO inhibitor-sensitivity in aqp-null T. b. brucei may help to predict how trypanosomes in

patients will respond to respiratory inhibitors. In particular, naturally occurring melarsoprol-

resistant clinical T. b. gambiense isolates display chimerisation of the AQP2/3 genes [14].

Indeed, a substantial proportion, >50% in some areas, of circulating T. b. gambiense may be

AQP2-defective [12,13]; probably due to selection with melarsoprol since the 1940s. To analyse

whether this AQP2 defect might have an impact on respiratory inhibitor-sensitivity in clinical

isolates, we generated SHAM dose-response curves. The isolates selected were the melarso-

prol/pentamidine sensitive STIB930 and STIB891 strains (EC50 <10 and<2 nM, respectively,

according to [12]), the melarsoprol/pentamidine resistant K03048 and 40 AT isolates from

melarsoprol-relapsed patients (EC50 >20 and>50 nM, respectively, according to [12]) and a

40 AT-derivative that re-expresses AQP2 and is consequently restored to melarsoprol/pentam-

idine sensitivity [14]. The STIB930 and STIB891 strains are from patients in Côte d’Ivoire in

1978 [29] and Uganda in 1995 [30] and the K03048 and 40 AT isolates are from patients in

South Sudan in 2003 [31] and the Democratic Republic of the Congo in 2006 [13], respectively.

The STIB930 and STIB891 strains have intact AQP2 genes, while neither of the latter isolates

has an intact AQP2 gene [12].

As our studies on T. b. brucei had predicted, dose-response curves for the T. b. gambiense
strains revealed significantly lower EC50 values for both aqp2-defective strains relative to the

AQP2 controls (Fig 5A); the strains that lacked AQP2 were also confirmed to be pentamidine-

resistant (Fig 5A, inset), as previously reported [12]. These results suggest a glycerol-efflux

defect in the aqp2-defective clinical isolates. Re-expression of AQP2 in 40 AT cells did not sig-

nificantly alter SHAM-sensitivity, however (Fig 5A). This may indicate that the AQP2/3 chi-

mera interferes with glycerol efflux by recombinant AQP2, possibly due to the formation of

AQP hetero-tetramers that, despite the glycerol efflux defect, continue to contribute to pent-

amidine uptake by endocytosis [22]. The addition of 10 mM glycerol significantly reduced

SHAM EC50 values to<1 μM in all five cell-types (Fig 5A), indicating, as predicted, continued

(B) In the presence of SHAM and glycerol, the glycerol inhibits glycerol kinase (GK), also preventing ATP-production by the

anaerobic route (blue ‘cell’). SHAM dose-response curves as in A but in the presence of 10 mM glycerol. (C) Propyl gallate

and octyl gallate dose-response curves for wild-type (WT) and aqp1-2-3 null-cells. EC50 values are indicated. (D) SHAM

EC50 values +/- 10 mM glycerol from A-B and also from aqp2, aqp2-3 and aqp1-2-3 cells re-expressing GFPAQP2. *
indicates significantly different (P<0.01) to WT using an ANOVA test in GraphPad Prism. Pairwise comparisons +/- glycerol,

except in the case of the aqp1-2-3 null, indicated significant (P <0.001) differences using a Student’s t-test. Error bars, SD.

The images to the right show re-expression of GFPAQP2 in aqp1-2-3 null-cells.

https://doi.org/10.1371/journal.ppat.1006307.g004
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glycerol influx in each case. To extend these findings, we examined the impact of two addi-

tional TAO inhibitors, propyl gallate and ascofuranone [32], on the same set of strains

described above. Dose-responses for propyl gallate (Fig 5B) and ascofuranone (Fig 5C)

revealed similar EC50 profiles as detailed above for SHAM. Although the STIB891 EC50 for

propyl gallate was relatively low, both aqp2-defective strains displayed an even lower EC50, and

both were significantly more sensitive to the respiratory inhibitors than the STIB930 control

(Fig 5B and 5C). Once again, re-expression of AQP2 in 40 AT cells did not significantly alter

respiratory inhibitor sensitivity (Fig 5B and 5C).

Together, our results indicate that triple aqp-null and aqp2 null T. b. brucei exhibit defects

in bidirectional glycerol flux. The evidence is three-fold; first, failure to take up or effectively

utilise glycerol as a carbon source; second, sensitivity to multiple respiratory inhibitors which

produce toxic levels of intracellular glycerol; and third, no significant increase in SHAM-

Fig 5. Respiratory inhibitor-sensitivity in T. b. gambiense isolates and AQP-mediated glycerol transport. (A) SHAM EC50 values for the T. b

gambiense strains are indicated +/- glycerol. The inset shows pentamidine EC50 values. * indicates significantly different (P<0.05) to STIB930 using an

ANOVA test in GraphPad Prism. All pairwise comparisons +/- 10 mM glycerol also indicated significant (P <0.001) differences using a Student’s t-test.

Error bars, SD. (B) Propyl gallate and (C) Ascofuranone EC50 values. Other details as in A. (D) Model for glycerol transport by AQPs in T. b. gambiense.

The weight of the arrows indicates relative impact on glycerol utilisation and efflux, with AQP2 being the major contributor; note that transport across both

the plasma and glycosomal membranes contributes to glycerol utilisation and efflux, see the text for more details. The right-hand panel indicates the

situation in melarsoprol-resistant (reduced melarsoprol uptake) and SHAM-sensitive (reduced glycerol efflux) clinical isolates where a chimeric AQP2/3

replaces AQP2 and AQP3.

https://doi.org/10.1371/journal.ppat.1006307.g005
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sensitivity in excess glycerol in triple-null cells. Thus, glycerol flux appears to be almost absent

in aqp1-2-3 triple-null cells. Our results also indicate that AQP2 makes a key contribution to

glycerol utilisation and efflux. This interpretation is supported by a substantial defect in glyc-

erol utilisation and sensitivity to SHAM in aqp2 null-cells; a phenotype that is reversed by

AQP2 re-expression in aqp1-2-3 triple-null cells. Importantly, analysis of melarsoprol/pentam-

idine sensitive T. b. gambiense reference strains and melarsoprol/pentamidine resistant clini-

cal-isolates supports the idea that AQP2 also makes a key contribution to glycerol efflux in

trypanosomes in patients (see Fig 5D). We propose that it is the replacement of AQP2 with the

AQP2-3 chimera in clinical isolates (Fig 5D) that increases sensitivity to respiratory inhibitors.

Notably, although the chimera comprises <15% of the AQP3-sequence at the C-terminus, like

AQP3 [9], the chimera is distributed within the plasma membrane [10]; AQP2 by contrast is

concentrated in the flagellar pocket in bloodstream-form cells [9].

Discussion

Here, we describe bloodstream-form T. b. brucei strains that lack all three AQPs. These strains

exhibit only a minimal fitness-defect and no apparent osmoregulation-defect. They do, how-

ever, exhibit bidirectional defects in glycerol transport. AQP2 is an important determinant of

cross-resistance to melarsoprol and pentamidine and this AQP was also found to make a key

contribution to glycerol transport. Finally, following analysis of clinical isolates, we propose

that the AQPs behave similarly in parasites in patients, suggesting that TAO-inhibitors may be

more effective against melarsoprol-resistant African trypanosome infections.

The triple aqp-null strain was assembled with the primary purpose of dissecting AQP-func-

tions. We note though that successful generation of such a strain indicates that the AQPs are

unlikely to be suitable therapeutic targets for inhibition. It was also possible to generate malaria

parasites that lacked the single encoded AQP gene; these aqp-null Plasmodium parasites dis-

played defective glycerol uptake and moderately reduced virulence [33]. We find that aqp1-2-3
null T. b. brucei establish parasitemia in mice. Indeed, strains isolated from patients following

melarsoprol treatment-failure, in an area where treatment-failure is common, display fusion

of AQP2 and AQP3 to form an AQP2/3 chimera [12,13]. This suggests, either that these AQPs
are dispensable at all stages of the life-cycle, or that the chimera complements the defect(s). It

remains possible that AQP1 or the AQP2/3 chimera have essential functions in other life-cycle

stages, but we were able to differentiate triple-null cells to the procyclic stage in vitro and also

note that T. vivax and T. congolense appear to lack both the AQP1 and AQP2 genes [34].

The three T. b. brucei AQPs were previously reported to play a role in osmoregulation [16].

The same study indicated an additional glycerol transport activity in T. b. brucei [16]. In con-

trast, we observe minimal or no defect in osmoregulation and detected minimal residual glyc-

erol flux in triple aqp-null cells. The former difference could potentially reflect adaptation in

null cells but the latter difference is likely explained by only 36% AQP2 knockdown or 73% tri-

ple AQP knockdown in the former study [16]. Notably, adaptation, if it operates, would also

be expected in clinical and veterinary isolates that lack AQP genes. How is osmoregulation

achieved in other parasitic trypanosomatids? A contractile vacuole/spongiome complex is

present in Trypanosoma cruzi and Leishmania major, and aqua(glycero)porins have been local-

ised to these organelles [35,36]; the T. cruzi aquaporin is not closely related to the T. brucei
AQPs but Leishmania AQP1 is closely related [6] and does play a role is osmoregulation [37].

However, water can diffuse across membranes and alternative mechanisms of osmoregulation

do operate. In both L. major [38] and Crithidia luciliae [39], cells tolerate hypotonic stress

through the efflux of amino acids and, in Leishmania donovani, also through the efflux of inor-

ganic osmolytes [40]. Thus, T. brucei AQPs may contribute to osmoregulation, but we suggest
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that the primary roles of these AQPs in bloodstream-form cells are the transport of glycerol

and other solutes.

Under aerobic conditions, T. b. brucei can use glycerol as a carbon source [41]. We found

that triple aqp-null cells, and even aqp2-null cells, fail to effectively utilise glycerol. This indi-

cates that AQPs contribute to glycerol-uptake and utilisation and that AQP2 makes a key con-

tribution. Since glycerol utilisation and production under anaerobic conditions occurs inside

glycosomes [25], we must consider glycosomal transport as well as transport across the plasma

membrane. A T. cruzi aquaporin is localised to acidocalcisomes [36] but AQPs have not been

reported to be associated with glycosomes. It is possible that the T. brucei AQPs are also pres-

ent in glycosomal membranes but there may equally be alternative glycerol transporters associ-

ated with these organelles.

Carbohydrate catabolism in African trypanosomes has been considered a promising poten-

tial antitrypanosomal therapeutic target for>40 years. Indeed, a SHAM plus glycerol combi-

nation blocks aerobic and anaerobic glycolysis in vivo and clears parasites from the blood of

experimental animals within 5 min [27]. Since this combination is so effective, glycerol-efflux

has remained of particular interest [26]. SHAM inhibits TAO, which is upregulated in the

bloodstream-form and not found in other trypanosomatids or in the mammalian host [26].

TAO inhibition blocks the aerobic pathway and increases the production of ATP via the

reverse-action of glycerol kinase [41]. The glycerol produced by this anaerobic glycolysis will

become toxic if not removed from the cell. If glycerol is not removed, it reverses the action of

glycerol kinase by mass-action and also blocks the anaerobic pathway, explaining the toxic

effect of SHAM plus glycerol. Our findings indicate that this SHAM-glycerol effect is depen-

dent upon the AQPs. Indeed, our results show that aqp2, aqp2-3 and aqp1-2-3 cells, and clini-

cal isolates lacking AQP2 but with an AQP2/3 chimera, display increased sensitivity to multiple

respiratory inhibitors in the absence of exogenous glycerol. Thus, AQP2 plays a key role in

both glycerol utilisation and efflux.

The combination of SHAM with a large dose of glycerol, required at up to 15 g per kg,

remains impractical as a therapy [42]. More potent antitrypanosomal TAO inhibitors have

been developed, however [42,43,44]. Our finding, therefore, that aqp2-deficiency is associated

with TAO-inhibitor sensitivity, has implications for potential future therapeutic strategies. For

example, new TAO-inhibitors may be effective as mono-therapies against melarsoprol-resis-

tant T. b. rhodesiense [4], or T. b. gambiense, known to lack AQP2 in the latter case [12]. This

may also be the case for T. vivax and T. congolense, where the reference genomes indicate

the absence of both the AQP1 and AQP2 genes and the presence of only an AQP3-like gene

(Tvy486_1013610 and TcIL3000_10_12040, respectively) [34]. Indeed, although SHAM alone

is ineffective against T. vivax [45], ascofuranone is effective against T. vivax infections in mice

without added glycerol [32]. This and other TAO inhibitors are thought to function by mim-

icking ubiquinol and blocking electron transfer to the oxidase [46].

Melarsoprol has been highly effective against trypanosomiasis but clinical resistance, due to

an aqp2-defect, has become widespread [12]. An option, therefore, could be to apply TAO-

inhibitors and melarsoprol sequentially or in combination; this could establish a counter-resis-

tance approach whereby AQP2 is required for both the uptake and efflux of toxins. Further sim-

ilar options may emerge from on-going efforts to develop safer and orally available arsenical

formulations [47]. Ultimately, reciprocal shifts in drug-sensitivity, such as the example we

describe here, may be exploited to develop novel paradigms of targeted-therapy. Such strategies

could restrict or even reverse the emergence and spread of drug resistance in human and live-

stock parasites, which would be of great value given the high cost of developing new therapies.

Our studies on aqp-null T. b. brucei and on clinical isolates of T. b. gambiense have revealed

bidirectional defects in glycerol transport and the key contribution of AQP2, the AQP
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specifically responsible for melarsoprol- and pentamidine-sensitivity, now also shown to

impact respiratory inhibitor sensitivity. Thus, AQPs impact the efficacy of three major classes

of antitrypanosomal drugs. These new mechanistic insights into differential sensitivities to

antitrypanosomal drugs, in both clinical and veterinary settings, are potentially exploitable.

Materials and methods

T. b. brucei growth and manipulation

Bloodstream-form T. brucei, Lister 427, MiTat 1.2, clone 221a, and all derivatives were cultured

in HMI-11 as previously described [48]. Bloodstream-form T. b. gambiense were cultured in

the same media but with 15% FCS and 5% human serum. 2T1 [24], aqp2 [9], aqp2-3 [23],

STIB930, STIB891, K03048, 40 AT [12] and 40 AT plus AQP2 [14] strains were described pre-

viously. SHAM, glycerol, octyl gallate and propyl gallate were from Sigma. SHAM was dis-

solved in DMSO, the gallates were dissolved in 70% ethanol or DMSO and ascofuranone was

dissolved in DMSO. EC50 assays were performed using the AlamarBlue method as described

[49] with 10 mM glycerol added as appropriate; drug exposure was for 66–67 h and Alamar-

Blue incubation was for 5–6 h. Plates were read on an Infinite 200 Pro plate-reader (Tecan).

Growth rates in culture were monitored by splitting to 1 x 105 cells/ml and by counting daily.

Three Balb/c mice were infected with aqp1-2-3 triple-null trypanosomes by intraperitoneal

injection of 104 cells in 0.2 ml of growth medium. Parasitaemia was determined daily following

tail bleeds. Mice were purchased from Envigo, UK. Differentiation to insect-stage, procyclic

form cells was initiated by washing 2 x 107 cells twice in DTM [50] and re-suspending in 5 ml

DTM supplemented with citrate (3 mM) and cis-aconitate (3 mM) at 27˚C.

Plasmids and strain construction

For AQP-knockout plasmid constructs, AQP-flanking sequences were inserted on both sides of

selectable marker cassettes. Restriction enzyme cleavage at the distal ends of the AQP targeting

regions was used to linearise plasmid constructs prior to transfection. The AQP2-3 locus was

disrupted by replacing a 4,772 bp fragment [9] with BLA and a modified NPT selectable marker

cassette. The AQP1 locus was disrupted by replacing a 647 bp fragment with NPT and (a modi-

fied) PAC selectable marker cassettes. The AQP1:PAC and AQP2-3:NPT cassettes were modified

using annealed oligonucleotides (XSceF: CTAGTAGGGATAACAGGGTAAT, and XSceR:

CTAGGATTACCCTGTTATCCCTA) to engineer an I-SceI site at an Xbal site adjacent to each

5’-targeting region. Other oligonucleotide sequences are available upon request.

During creation of the aqp1-2-3 triple-null strains, selectable markers were recovered

using I-SceI meganuclease-induction in a 2T1 (BLE:PAC) background [48]. Briefly, a pRPaSce

[51] construct (HYG recovers PAC) was introduced at the tagged locus on chromosome 2

and the AQP2-3 alleles were replaced with BLA and NPT-cassettes, the latter containing the

flanking I-SceI cleavage site. Induction with 1 μg.ml-1 tetracycline triggered I-SceI cleavage

and duplication of the BLA-cassette (NPT recovered). A similar process was repeated for

AQP1 alleles but this time with NPT and PAC-cassettes (PAC recovered). The ph3E construct

[48] was then used to remove the I-SceI cassette (PAC recovered HYG). A pRPaAQP2 con-

struct (HYG recovers PAC) was then used for expression of recombinant AQP2 in the 2T1-

aqp1-2-3 null-background (BLE:BLA:NEO:PAC). Selectable-marker recovery was confirmed

by screening individual clones in multi-well plates. Strains were transfected using a Nucleo-

fector (Lonza) and cytomix. Transformants were selected with phleomycin (1 μg.ml-1), blas-

ticidin (10 μg.ml-1), G418 (2 μg.ml-1), puromycin (2 μg.ml-1) and hygromycin (2.5 μg.ml-1)

as appropriate and AQP knockout was confirmed by Southern blotting, carried out accord-

ing to standard protocols.
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Hypo-osmotic shock assays

Cell volume during hypo-osmotic shock was assessed using a light-scattering assay. Briefly, 5 x

107 cells were pelleted and resuspended in ice cold Earle’s salt buffer (116 mM NaCl, 1.8 mM

CaCl2, 5mM KCl, 0.8 mM MgSO4, 1 mM NaH2PO4, 30 mM HEPES, 30 mM glucose, pH 7.4).

1.3 x104 cells in 100 μl per well were added to 96-well plates. Either 100 μl of cold deionised

water (hypo-osmotic) or Earle’s salt buffer (iso-osmotic) was added to each well. Results were

then immediately read at 18-s intervals over a course of 25-min, using a Tecan Infinite 200 pro

plate-reader at 595 nM absorbance.

Microscopy

For phase and fluorescence microscopy, cells were fixed in 1% paraformaldehyde, settled onto

slides and mounted in Vectashield (Vector Laboratories) containing 4,6-diamidino-2-pheny-

lindole (DAPI). Images were captured using an Axiovert 200 epifluorescence microscope in

conjunction with an Axiocam 105 colour camera (Zeiss) and were processed using Zen digital

imaging suite.

ATP quantification

We used the CellTiter-Glo luminescence assay (Promega). Briefly 5 x 106 cells were washed

twice with cold PBS and re-suspended in 1 ml of 37˚C PBS with either 5 mM glucose or glyc-

erol in PBS for 20-min before performing the assay as per the manufacturers’ instructions.

Plates were read on an Infinite 200 Pro plate-reader (Tecan). Values were compared to an ATP

standard-curve.

Glycerol uptake assay

We used a [14C] glycerol centrifugation method [52] with minor modifications. Briefly, cells

were pelleted by centrifugation (1,000 g, 10 min), washed twice in transport buffer (33 mM

HEPES, 98 mM NaCl, 4.6 mM KCl, 0.55 CaCl2, 0.07 MgSO4, 5.8 mM Na2PO4, 0.3 mM

NaHCO3, 14 mM glucose, pH 7.3) and diluted to 1 x 108/ml in transport buffer on ice. Uptake

was measured (at 37˚C) by introducing 100 μl of cells to 100 μl transport buffer, containing

0.25 uCi glycerol. This reaction mixture was immediately loaded onto 100 μl of dibutyl phthal-

ate (Sigma) in 1.5 ml Eppendorf tubes. After incubation for 5 min, cells were pelleted through

the oil layer by centrifugation (16,000g, 1 min). The tubes were then frozen on liquid nitrogen

and the bottoms of the tubes, containing pellets, were snipped directly into scintillation vials.

Pellets were solubilised overnight in 150 μl 1 M NaOH, before mixing with 2 ml of scintillation

fluid and reading on a scintillation counter (Beckman LS 6500) for 1 min.
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