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Background: Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on
the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key
determinant of growth failure in children in low- and middle-income populations. A theory-driven systems
model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and sys-
temic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and
Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development
(MAL-ED) birth cohort study that included children from eight countries.
Methods:Non-diarrheal stool samples (N=22,846) from 1253 children frommultiple sites were evaluated for a
panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin.
Among these same children, urinary lactulose:mannitol (L:M) (N=6363) and plasma alpha-1-acid glycoprotein
(AGP) (N=2797)were alsomeasured. The temporal sampling designwas used to create a directed acyclic graph
of proposedmechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of in-
testinal permeability and inflammation, systemic inflammation and change in length- andweight- for age in chil-
dren 0–2 years of age.
Findings: Children in these populations had frequent enteric infections and high levels of both intestinal and sys-
temic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or
causingmucosal disruption, were associatedwith elevated biomarker concentrations of gut and systemic inflam-
mation and, via these associations, indirectly associatedwith both reduced linear and ponderal growth. Evidence
for the association with reduced linear growth was stronger for systemic inflammation than for gut inflamma-
tion; the opposite was true of reduced ponderal growth. Although Giardiawas associated with reduced growth,
the association was not mediated by any of the biomarkers evaluated.
Interpretation: The large quantity of empirical evidence contributing to this analysis supports the conceptual
model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic
Keywords:
Enteropathy
Undernutrition
Stunting
Enteropathogen
Child growth
Child health
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pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support
in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth
mediated through systemic inflammation.
Funding: Bill & Melinda Gates Foundation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Fig. 1. Conceptual model of the associations between pathogens, markers of gut function
and inflammation, systemic inflammation and growth.
1. Introduction

Traditionally, the evaluation of pathogenicity from enteric in-
fections in the host has focused on the evaluation of defined diar-
rheal or acute gastrointestinal illnesses and the health outcomes
associated with such illness perceived as binary, that is, either
death or survival. It has been posited that the host response to fre-
quent enteric infections alters the gut in a way that adversely af-
fects the health status of the host even in the absence of diarrhea
or acute gastrointestinal illness. The consequences of this altered
host phenotype may have long term effects on child health and de-
velopment potential. This condition is known as environmental
enteropathy (EE). A proposed consequence of EE is reduced linear
growth in children (Lunn, 2000; Keusch et al., 2013; Keusch et al.,
2014), and EE may explain the less than expected effectiveness of
nutritional interventions to improve growth in developing popula-
tions (Lunn et al., 1991; Humphrey, 2009; Korpe & Petri, 2012;
Kosek et al., 2014). Several mechanisms have been proposed to ex-
plain how EE results in poorer nutritional status by reducing func-
tional capacities of the gut. These include reduced absorptive
capacity (Kelly et al., 2004; Menzies et al., 1999), increased perme-
ability (Lunn et al., 1991), and chronic intestinal and systemic in-
flammation with resulting metabolic changes that affect nutrient
and micronutrient availability and utilization (Campbell et al.,
2003; Kosek et al., 2013).

Multiple physiological mechanisms by which enteropathogens can
disrupt gut functioning have been identified (Guerrant et al., 1999;
Berkes et al., 2003; Beltinger et al., 2008; Viswanathan et al., 2009;
Kamada et al., 2013; Brown et al., 2015) although the long term conse-
quences in settings where exposure to enteropathogens is intense and
continuous (Platts-Mills et al., 2015) are poorly understood. Populations
in low- and middle-income countries are also subject to other causes of
growth failure, including inadequate dietary intake and frequent overt
illness, any of which may influence both EE biomarkers and observed
growth outcomes.

The collection of non-invasive biomarkers of EE is expanding, with
different markers characterizing different aspects of gut physiology
and integrity. The most widely used EE biomarker is the
lactulose:mannitol (L:M) dual sugar test for intestinal permeability
(Menzies et al., 1999; Denno et al., 2014), which has been used to dem-
onstrate that altered gut permeability is related to the risk of stunting
and is prevalent in environments with poor sanitation (Lunn et al.,
1991; Lin et al., 2013; Weisz et al., 2012). Other EE bioassays available
include fecalmarkers of gut inflammation (Campbell et al., 2004), intes-
tinal growth factors (Peterson et al., 2013), and plasmamarkers of bac-
terial translocation (Naylor et al., 2015). Additionally, an increasing set
of markers are becoming available that encompass systemic inflamma-
tion and amino acid and lipid metabolism (Campbell et al., 2003;
Mondal et al., 2012; Hashimoto et al., 2012; Mayneris-Perxachs et al.,
2016; Semba et al., 2016). Aligning the pathways indicted by this
expanding collection of biomarkers with enteric infections and growth
in early infancy and childhood across different populations is the subject
of considerable current effort (Kosek et al., 2013; Peterson et al., 2013;
Prendergast & Kelly, 2012).

The Etiology, Risk Factors and Interactions of Enteric Infections
and Malnutrition and the Consequences for Child Health and Devel-
opment (MAL-ED) study was designed to assess the role of
enteropathogens and other factors in growth faltering from birth to
two years across eight sites (MAL-ED Network Investigators, 2014a).
A central hypothesis of MAL-ED is that gut injury resulting in disrup-
tion of normal physiology is the key route by which enteropathogens
contribute to malnutrition. Here, we use a causal systems model (a
directed acyclic graph [DAG]) to test key theoretical pathways of
the EE conceptual model and examine how enteropathogen infection
results in impaired physical growth in infancy and early childhood
(Fig. 1).

2. Methods

2.1. Study Design and Population

The MAL-ED study, conducted in eight diverse sites on three conti-
nents: Bangladesh (Dhaka: BGD), India (Vellore: INV), Nepal (Bhaktapur:
NEB), and Pakistan (Naushero Feroze: PKN) in Southern Asia; Brazil (For-
taleza: BRF) and Peru (Loreto: PEL) in Latin America; and South Africa
(Venda: SAV) and Tanzania (Haydom: TZH) in Sub-Saharan Africa. The
study design is described in detail elsewhere (MAL-ED Network
Investigators, 2014b). In brief, children were enrolled within 17 days of
birth, but excluded if they had a birth weight b 1500 g, were very ill, or
were non-singleton; or if their mother was b16 years of age. Approxi-
mately 10 children were enrolled per month per site, with the goal of
retaining ≥200 per site at 24 months of age (after loss to follow up).
Data collection methods are described elsewhere for illness and treat-
ment (Richard et al., 2014), infant feeding (Caulfield et al., 2014), and
stoolmicrobiology (Houpt et al., 2014). Each site obtained ethical approv-
al from their respective institutions and written consent was obtained
from participants.

Non-diarrheal stool samples collected monthly in the first year and
quarterly in the second year were evaluated for N40 pathogens using
a standardized approach (Houpt et al., 2014). In addition to analyzing
total number of pathogens detected per stool, we also categorized path-
ogens into five groups based on pathophysiology. Group I included

http://creativecommons.org/licenses/by/4.0/


Fig. 2. Timeline for collection of stool, urine, and blood samples and their respective biomarker assays that relate to changes in growth Z-scores.

Table 1
The number of samples collected and with complete data to yield observations in individ-
ual children included in the systemmodel. The analysis of individual biomarkers includes
all available observations.

Age 1 (4 ≤ m ≤ 11) Age 2 (12 ≤ m ≤ 21)

Collected Complete Collected Complete

Samples Blood 1503 1476 1536 1503
Urine 1767 1601 1706 1535
Non-diarrheal stools 4481 4285 2821 2676
Anthropometry 15,272 15,257 16,232 16,215

Children Total 2001 1873
Excluding PKN 1734 1617
Complete data 1059 1070
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viruses that cause limited mucosal disturbances (rotavirus, adenovirus
and astrovirus). Group II included bacteria that are enteroinvasive or
cause extensive mucosal disruption (Campylobacter, Shigella, Salmonel-
la, Plesiomonas, Yersinia, enteroaggregative E. coli (EAEC), enteropatho-
genic E. coli (EPEC), enteroinvasive E. coli (EIEC) and Aeromonas).
Group III was enterotoxigenic E. coli (ETEC), which is a cause of secreto-
ry diarrhea with only limited mucosal changes. Cryptosporidium (Group
IV) and Giardia (Group V) were considered independently as organisms
have both been shown to be associated with linear growth failure and
prolonged and persistent carriage.

Three fecal biomarkers relating to aspects of gut inflammation and
immunity (“local inflammation” in Fig. 1) were evaluated using the
same non-diarrheal stool samples assayed for enteropathogens:(Kosek
et al., 2014; Kosek et al., 2013) (1) myeloperoxidase (MPO, ng/mL) as
a marker of neutrophil activity in the intestinal mucosa (Alpco, Salem,
NH, USA); (Keusch et al., 2013) neopterin (NEO, nmol/L) to indicate T-
helper cell 1 activity (GenWay Biotech, San Diego, CA, USA); and
(Keusch et al., 2014) alpha-1-antitrypsin (AAT, mg/g) to indicate pro-
tein loss and intestinal permeability (Biovendor, Candler, NC, USA). Be-
cause diarrhea leads to stool dilution, fecal biomarker values were
excluded if proximate to diarrheal symptoms (within seven days
prior). Similarly, stools collected the day of or the day following the
L:M test were excluded as this test is an osmotic laxative.

In addition to fecal biomarkers, urinary L:M testing (“gut permeabil-
ity” in Fig. 1) was performed at three, six, nine, and 15 months, as de-
scribed elsewhere (Kosek et al., 2014). Urine samples were processed
using high-performance liquid chromatography and pulsed ampero-
metric detection or ion chromatography (depending on study site).
The results were converted into a sample-based Z-score (LMZ) to min-
imize age and sex trends. Data from the BRF cohort were used as the in-
ternal reference standard.

Finally, systemic inflammation was evaluated at seven, 15, and
24 months using alpha-1-acid glycoprotein (AGP) concentration in
plasma. Incidence of acute lower respiratory infection (ALRI), diarrhea,
fever (associated with neither ALRI nor diarrhea), and a composite for
any of the three categorized illness episodes in the seven or 14 days pre-
ceding the blood collection were drawn from bi-weekly maternal re-
ports. These were used to examine the influence of recent, non-
diarrheal, overt illness on AGP concentration.

Monthly length (cm) and weight (kg) measures (Lohmann et al.,
1988) were converted to Z-scores (LAZ, WAZ respectively) based on
WHO 2006 standards (World Health Organization, 2006). The change
(Δ) in LAZ andWAZ for each child (final minus initial value for each pe-
riod) served as the outcome in all analyses, controlling for the initial
value. Intense quality assurance review procedures identified biaswith-
in the PKN length measures; therefore, these data were excluded from
the system analysis. PKN biomarker data were however, included in
the evaluation of associations between pathogens and biomarkers.
2.2. Statistical Analysis

First, tomaximally leverage the large size of theMAL-ED dataset and
to place our results in the context of previous studies, we analyzed rela-
tionships between pathogens and fecal biomarker concentrations, be-
tween pathogens and LMZ scores, between LMZ scores and changes in
anthropometry, and among potential sources of systemic inflammation
not associated with gut enteropathy.

Linearmixed effectsmodels were constructed to examine cross-sec-
tional associations between individual pathogens and concentrations of
each fecal biomarker. Specifically, the log concentrations of MPO, NEO,
and AAT were modeled as functions of stool consistency (a categorical
description of stool liquidity), linear and quadratic terms for child age
(to capture age-related trends), the presence of individual pathogens
(adjusting for the presence of other pathogens), and a random intercept
for child nested in site (McCormick et al., 2016).

The samemodel structurewas extended to evaluate associations be-
tween pathogen presence and LMZ scores, limiting the analyses to non-
diarrheal stools collected at the same age as the L:M test. Additionally,
changes in anthropometry (ΔLAZ and ΔWAZ) over three, six, and nine
monthwindows starting at each L:M assaywere evaluated as a function
of the LMZ scores. Individual children nestedwithin their respective site
were treated as a random intercept to account for clustering at both the
individual child and site levels.

To determinewhether the concentration of AGPwas related to overt
illness in the seven or 14 days preceding blood collection, another linear
mixed effects model was constructed with log-transformed AGP con-
centration as a function of age and illness (i.e., the presence of diarrhea,



Table 2
Observed characteristics of the subset of the MAL-ED population with complete data that were included in the system model. The mean and standard deviation (SD) of the continuous
variables (anthropometry and the biomarkers) are shown alongwith the percentage of the discrete variables that were positive for at least one pathogen in each of the groups or the pres-
ence of maternally reported symptoms of ALRI and fever preceding the AGP assay and the percentage of stools that were coincident with different food intakes.

Continuous variables Age 1 Age 2 Discrete variables Age 1 Age 2

Mean ±SD Mean ±SD % Positive % Positive

LAZ start −0.97 1.13 −1.05 1.05 Pathogens Group 1 6.85 9.11
ΔLAZ −0.06 0.63 −0.20 0.47 Group 2 56.76 65.86
WAZ start −0.53 1.15 −0.61 1.21 Group 3 6.85 10.21
ΔWAZ −0.04 0.50 −0.13 0.41 Group 4 3.43 5.10
log(MPO) 8.90 1.26 8.33 1.27 Group 5 3.36 18.35
log(NEO) 7.69 1.08 7.30 1.30 ALRI 1.71 1.94
log(AAT) −0.89 0.93 −1.17 1.13 Fever 28.26 24.18
log(AGP) 4.61 0.40 4.63 0.36
LMZ 0.35 0.87 0.40 1.12

Fig. 3. Effect of pathogens on the three fecal biomarkers (Nnon-diarrheal stools=27,931)
and the L:M test (N urine samples = 4476). The color represents the coefficient from a
linear mixed effects model with pathogens found in the same stool as the fecal
biomarkers or during the same month as the L:M test. Cells with crosses are not
significant (p ≥ 0.05). Pathogens, within their groups (I˗V), are sorted by prevalence
(high to low, left to right). In addition to the presence of individual pathogens, age was
included using both linear and quadratic terms, stool consistency was included in the
biomarker models, and child nested in site was included as a random intercept.
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fever, and ALRI). A random intercept for child nested in site was
included.

In addition to these linear regressions and given that disease systems
composed of different interacting pathways lend themselves to causal
graphical modeling (e.g., Fig. 1) (Pearl, 1995; Greenland et al., 1999)
we constructed a DAG model to test hypothetical pathways between
the presence of enteropathogens, biomarker concentrations, and chang-
es in LAZ and WAZ. Combining all factors into a single system allowed
for the explicit partition of associations into direct and indirect
pathways.

Variableswithin this systemwere represented as conditionally inde-
pendent, multivariate, generalized linear mixed models such that the
probability of observing a given value for each variable was a function
of other variables connected within the system (indicated by arrows
in Fig. 1). To account for heterogeneity between sites, random effects
for both site and child were added at every node. The DAG analysis fo-
cused on two time periods, 4 ≤ months ≤ 11 (Age 1) and 12 ≤ months
≤ 21 (Age 2), using the data collection schedule shown in Fig. 2 to cap-
ture temporal associations between events marked by the biomarkers.
Specifically, pathogen data was coincident with collection of the fecal
biomarkers (MPO, NEO, and AAT). Their collection preceded collection
of L:M as alterations in gut permeability are a hypothesized result of in-
flammation. Measures of systemic inflammation then followed. The
temporal window then extended beyond biomarker collection to assess
associations with subsequent growth.

The net effects of both direct and indirect pathways were simulated
from the fitted DAG. Sensitivities of ΔLAZ and ΔWAZ to changes in each
biomarker were examined by fixing each biomarker to its observed
mean concentration as well as one standard deviation higher or lower.
The ΔLAZ and ΔWAZ were then simulated and the difference between
their mean values when biomarkers were raised or lowered relative to
when they were held at mean concentration were estimated.

The model was run in JAGS (version 3.4.0) to performMarkov Chain
Monte Carlo simulations (Plummer, 2003). Further details are given in
the Appendix.

2.3. Role of the Funding Source

The Bill & Melinda Gates Foundation did not play any role in the
writing of the manuscript nor did the funders have of the study had
any role in the study design, data collection, analysis, or interpretation
of study results. The corresponding author had full access to all the
data in the study and had final responsibility for the decision to submit
for publication.

3. Results

Data from the entire cohort were included in the linear analyses for
associations between pathogens and fecal biomarkers and LMZ, the
changes in anthropometry following the L:M test, and between illness
and AGP (Table 1 and Table 2). Among the over 20,000 non-diarrheal
stools tested for concentrations of MPO, NEO, and AAT, there was a
trend for the concentration of each biomarker to decrease with increas-
ing age.Within individual children; however, biomarker concentrations
were highly variable across time, with intra-class correlations (ICC) of
0·07, 0·03, and 0·06 for MPO, NEO, and AAT respectively. Pearson cor-
relation coefficients between the biomarkers were low (≤0·2) suggest-
ing they measured different physiological insults.

A comparison of associations between enteropathogens and the
fecal biomarkers revealed that pathophysiological groups tended to
show similar trends, with some prevalent pathogens being associated
with either higher or lower biomarker concentrations (e.g., Campylo-
bacter and EAEC were associated with higher concentrations of MPO
and AAT, while Giardiawas associated with lower concentrations of all
three fecal biomarkers). The associations were more pronounced in
some of the rarer pathogens (e.g., Yersinia enterocoliticawas strongly as-
sociated with increased MPO and decreased NEO concentrations the
few times it was detected) (Fig. 3). These exploratory models assumed
additive effects of pathogens, though in many instances more than
one pathogen was detected.

LMZ tended to be higher, indicating increased permeability, in chil-
dren with pathogens detected, especially those with positive tests for
Cryptosporidium (0·34 ± 0·08 for mean ± standard deviation, N =
134) and Giardia (0·20 ± 0·05, N = 457) (Fig. 3). However, there
was no statistical support for LMZ relating to changes in either LAZ or
WAZ (Table 3).

With respect to systemic inflammation, approximately half themea-
sures of AGP were elevated (N100 mg/dL), indicating common subclin-
ical inflammation. Across the two time points when AGPwasmeasured,



Table 3
The relationship between the LMZ and changes in LAZ and WAZ over a three, six, or nine month period from the age of the L:M test. L:M tests were performed at three, six, nine, and
15 months. Child nested in study site was considered a random intercept to account for repeated measures and site heterogeneity.

Mean effect (±standard error)

ΔLAZ (months post L:M test) ΔWAZ (months post L:M test)

3 m 6 m 9 m 3 m 6 m 9 m

Constant (3 m L:M) −0.21 (0.08)⁎,⁎⁎ −0.71 (0.20)⁎⁎⁎ −1.08 (0.25)⁎⁎⁎ −0.21 (0.08)⁎ −0.71 (0.20)⁎⁎⁎ −1.08 (0.25)⁎⁎⁎

Constant (6 m L:M) −0.12 (0.02)⁎⁎⁎ −0.21 (0.02)⁎⁎⁎ −0.19 (0.02)⁎⁎⁎ −0.12 (0.02)⁎⁎⁎ −0.21 (0.02)⁎⁎⁎ −0.19 (0.02)⁎⁎⁎

Constant (9 m L:M) −0.24 (0.02)⁎⁎⁎ −0.33 (0.02)⁎⁎⁎ −0.27 (0.02)⁎⁎⁎ −0.24 (0.02)⁎⁎⁎ −0.33 (0.02)⁎⁎⁎ −0.27 (0.02)⁎⁎⁎

Constant (15 m L:M) −0.25 (0.02)⁎⁎⁎ −0.40 (0.02)⁎⁎⁎ −0.33 (0.02)⁎⁎⁎ −0.25 (0.02)⁎⁎⁎ −0.40 (0.02)⁎⁎⁎ −0.33 (0.02)⁎⁎⁎

LAZ/WAZ at start −0.24 (0.01)⁎⁎⁎ −0.65 (0.01)⁎⁎⁎ −0.82 (0.01)⁎⁎⁎ −0.24 (0.01)⁎⁎⁎ −0.65 (0.01)⁎⁎⁎ −0.82 (0.01)⁎⁎⁎

L:M Z-score (3 m) 0.00 (0.02) −0.01 (0.01) 0.00 (0.01) 0.00 (0.02) −0.01 (0.01) 0.00 (0.01)
L:M Z-score (6 m) −0.03 (0.02) 0.03 (0.02) −0.01 (0.02) −0.03 (0.02) 0.03 (0.02) −0.01 (0.02)
L:M Z-score (9 m) −0.01 (0.02) −0.00 (0.02) −0.02 (0.02) −0.01 (0.02) −0.00 (0.02) −0.02 (0.02)
L:M Z-score (15 m) −0.02 (0.02) 0.00 (0.02) 0.00 (0.02) −0.02 (0.02) 0.00 (0.02) 0.00 (0.02)
N 5343 5213 5117 5343 5213 5117
N children 1650 1591 1563 1650 1591 1563
N sites 7 7 7 7 7 7
Variance (child) 0.03 0.37 0.61 0.03 0.37 0.61
Variance (site) 0.05 0.27 0.44 0.05 0.27 0.44
Variance (Residual) 0.29 0.18 0.13 0.29 0.18 0.13

⁎⁎⁎ p b 0·001.
⁎⁎ p b 0·01.
⁎ p b 0·05.
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high concentrations were dispersed between children rather than fo-
cused in an identifiable subset (ICC 0·16). Across 4257 AGP assays, nei-
ther symptoms of ALRI (which was uncommon at the time of the two
blood draws) nor diarrhea were associated with concentrations of
AGP (Table 4). Maternally-reported fever in the 14 days prior to the
blood draw was associated with increased AGP concentration. Only
the subset of MAL-ED children with complete data (i.e. with nomissing
observations across all variables) was included in the DAG (Table 1).

Within the systems model, which included the pathogen groups, all
biomarkers, and both growth outcomes, the invasive bacteria (Group II)
showed positive associations withMPO for both ages (Fig. 4). Addition-
ally, ETEC (Group III) infection was associated with lower concentra-
tions of AAT at Age 1 and higher concentrations of MPO in older Age 2
children. At Age 1, AAT concentration was positively associated with
LMZ, while MPO was negatively associated with LMZ (Fig. 4). In the
older age period, MPO concentration was positively associated with
AGP, while NEO was negatively associated with AGP.

Regarding associations between biomarkers and the two growth
outcomes,ΔLAZ andΔWAZ, the systemsmodel revealed direct negative
relationships betweenMPO and bothΔLAZ andΔWAZduring Age 1 and
Table 4
The impact of recent overt symptoms on the log concentration of AGP based on
samples at seven, 15, and 24months. A linearmixedmodel of log(AGP) as a func-
tion of the presence or absence of overt symptoms in the 14 days preceding the
blood draw. Child nested in site was treated as a random intercept.

Variable Mean (±standard error)

Constant 4.58 (0.07)⁎⁎⁎,⁎⁎,⁎

Diarrhea 0.04 (0.05)
Fever 0.21 (0.04)⁎⁎⁎

ALRI −0.14 (0.07)
Age (months) −0.00 (0.00)
Diarrhea ∗ age 0.00 (0.00)
Fever ∗ age 0.00 (0.00)
ALRI ∗ age 0.02 (0.00)⁎⁎⁎

N 4257
N children 1801
N sites 8
Variance (child) 0.01
Variance (site) 0.03
Variance (residual) 0.15

⁎⁎⁎ p b 0·001.
⁎⁎ p b 0·01.
⁎ p b 0·05.
negative associations between AAT and ΔWAZ in both age groups (Fig.
4) (i.e., the higher the concentration of MPO or AAT, themore restricted
the growth over the respective period). There was no statistical support
for an association between LMZ and eitherΔLAZ orΔWAZ in the system
model (or for lactulose excretion, data not shown). Higher AGP concen-
trations were associated with decreased ΔLAZ at both ages and with
ΔWAZ during Age 1 (Fig. 4). Because enteropathogens, particularly
those associated with enteroinvasion or mucosal disruption (Group
II), were directly related to increasedMPO, theywere thereby indirectly
related to reduced growth.Giardiawas associated directly with reduced
growth, but not with the fecal biomarkers.

The effects of higher or lower biomarker concentrations relative to
their observed means on ΔLAZ and ΔWAZ over each age period are
shown in Fig. 5. None of the biomarkers had large mean effects on the
average ΔLAZ or ΔWAZ. Of the effects on ΔLAZ, changing the log(AGP)
concentration by ±1SD produced the greatest difference (±0·05
mean ΔLAZ), but little effect on the mean ΔWAZ (±0·02 ΔWAZ) rela-
tive to the observed concentration of log(AGP). Changing theMPO con-
centration by ±1SD had the second largest impact on ΔLAZ (+0·04 or
−0·03 for a decrease or increase in log(MPO) concentration respective-
ly). The effect of increasingMPO concentration onΔWAZwasmarginal-
ly larger (−0·05 ± 0·03), after which AAT had the second biggest
impact on ΔWAZ (+0·04 when decreased and−0·06 when log(AAT)
was increased by 1SD).
4. Discussion

The systems model presented here is the first effort to explicitly
combine enteropathogen exposure and different EE biomarkers (i.e.,
for gut permeability, gut inflammation, and systemic inflammation)
into a single system and examine prospectively the pathways through
which they relate to growth, thus providing an important proof of prin-
cipal for a poorly defined condition. The temporal nature of the data al-
lows for the exploration of causality and for the natural history of the
biologic processes being measured to be interpreted with rigor. Our
model is informed by a substantial quantity of structured longitudinal
data on enteropathogens in non-diarrheal stools, illness history, intesti-
nal inflammation and permeability, systemic inflammation, and growth
across seven populations. The number of repeated measures over time
and measures within the same individual is a particular strength of
these data. Enteropathogen presence changes the concentration of con-
temporary biomarkers of gut immunity (NEO), inflammation (MPO),



Fig. 4. Themodel results for (a) Age 1 (4 ≤months ≤ 11) and (b) Age 2 (12 ≤months ≤ 21) using functional pathogen groupings and the specific pathways indicated by the individual fecal
biomarkers as well as LMZ and AGP. Arrows show those relationships that had statistical support based on the 95% credibility interval. Red arrows indicate positive associations and blue
arrows show negative associations. The pathogen groups reflect 1) viruses; 2) invasive bacteria; 3) non-invasive bacteria; 4) Cryptosporidium; and 5) Giardia.
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and permeability (AAT and LMZ).Wefind additional evidence that both
enteropathogens and gut inflammation relate to systemic
inflammation.

Our results yield several important findings. First, children living in
these eight countries with differing epidemiologic settings have consis-
tently and strikingly high concentrations ofMPO (nearly 5–10 times the
those seen in the USA) (Saiki, 1998) and nearly twice the concentration
of AAT (Meyers et al., 1985). They also have notable elevations in AGP
and intestinal permeability (L:M) that are two to three times higher
than values in healthy populations (Kremer et al., 1988). Additionally,
there was a high burden of enteropathogens detected even in the ab-
sence of overt diarrhea episodes (Platts-Mills et al., 2015). But most im-
portantly, related MAL-ED analyses have demonstrated that, in the
Fig. 5. Sensitivity analysis of the DAG model (Fig. 4) to explore the effect of increasing (triangl
ΔWAZ at the two age periods (Age 1, black; Age 2, gray). Symbols indicate the mean diff
biomarkers are changed ±1 standard deviation compared to a simulation using the mean obs
diverse epidemiologic settings of the study, growth velocities were
low (MAL-ED Network Investigators, n.d.-a) leading to an increased
prevalence of stunting by two years (MAL-ED Network Investigators,
n.d.-b). The evidence we present here suggests that EE as measured by
these markers contributes to, but does not appear to be the predomi-
nant driver of growth faltering.

As hypothesized, pathogen presence in non-diarrheal stool samples
was associated with higher fecal MPO; this finding was also noted for
AAT, although the AAT findings were evident only in younger children
(aged 4˗11 months). When fecal biomarkers were evaluated for associ-
ationswith individual pathogens, stronger signals of inflammationwere
noted in response to the rarely detected Shigella and Yersinia and the
ubiquitous Campylobacter. The differential importance of pathogens in
es) or decreasing (squares) the concentration of different biomarkers on mean ΔLAZ and
erence (lines, ±1 standard deviation) in the mean simulated ΔLAZ and ΔWAZ when
erved biomarker value (i.e., the dotted horizontal line shows a difference of zero).
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inducing EE is an area that requires additional attention, especially
given the availability of newer technologies that allow for broad cover-
age and quantification of enteropathogens (Platts-Mills et al., 2015),
and other strategies for determining which microbial taxa are inducing
mucosal response in the gut (MAL-ED Network Investigators, n.d.-b).
Such studies will enhance our understanding of the possible impact of
etiology-specific interventions on EE.

Each of the three fecal biomarkers in this analysis have previously
been associated with an elevated risk of stunting in the first year of
life (George et al., 2015). Similar results have been found in other stud-
ies (Lin et al., 2013; Naylor et al., 2015). Here, we also find support for
direct effects of gut inflammation (i.e., as measured by the three fecal
biomarkers) on ΔLAZ or ΔWAZ. The evidence for an effect of systemic
inflammation (i.e., as measured by AGP) is more compelling than that
of the EE biomarkers.We found no evidence for an association between
augmented intestinal permeability (i.e., as measured by LMZ) and fu-
ture growth. Despite the popular use of L:M as a test of EE in cross sec-
tional studies, its predictive power for future growth is less clear. While
many studies have shown the L:M ratio to be associated with the con-
temporaneous LAZ (Lunn et al., 1991; Goto et al., 2009; Campbell et
al., 2002), others have found (as we did) that it was not predictive of
change in LAZ of children (Lin et al., 2013; Weisz et al., 2012). Given
that AAT was associated with both gut permeability and subsequently
to changes in growth (especially WAZ, both Age 1 and 2), it is possible
that AAT more reliably reflects changes (or more severe changes) in
permeability than the L:M test. The polar surface area of AAT greatly ex-
ceeds that of lactulose, and the size of the permeability defect may be
important to delineate in greater detail using alternate probes. It is
worth noting that other MAL-ED data (i.e., non-growth data) indicate
the L:M test is predictive of impaired efficacy of oral polio vaccine
(MAL-ED Network Investigators, n.d.-c). As such, the L:M test may cap-
ture other domains of EE not examined in these analyses.

Our results suggest that reductions in the exposure to pathogens, in
particular to invasive bacteria that increaseMPO, could reduce systemic
inflammation (AGP). Recent evidence from another cohort study simi-
larly highlighted the importance of systemic inflammation (Naylor et
al., 2015). AGP interacts with bacterial lipopolysaccharide (LPS)
(Moore et al., 1997), which is an indicator of bacterial translocation,
and LPS bound to AGP is more rapidly cleared from the body than un-
bound LPS. Consequently, it was surprising to see that neither LMZ
nor AAT were associated with AGP, as permeability leading to bacterial
translocation has been a principal hypothesized component of EE (Lunn
et al., 1991). Othermarkers of bacterial translocation are needed to con-
firm these findings.

Although our model indicates that specific enteropathogens alter
gut inflammation and permeability, the effect sizes of the pathways
from biomarkers to growth were smaller than anticipated (Humphrey,
2009; Brown et al., 2015). Based on available evidence, the contribution
of EE to growth deficits as captured in these biomarkers is small relative
to the accrued growth deficits in these populations (Lunn et al., 1991;
Humphrey, 2009; MAL-ED Network Investigators, n.d.-a; MAL-ED
Network Investigators, n.d.-b). The use of additional biomarkers or com-
binations of biomarkers and growth phenotypes (Naylor et al., 2015) or
inclusion ofmetabolicmarkersmayhelp to identify stronger support for
links between the interactions of enteropathogen pressure and
undernutrition on growth failure. Additionally, on-going work in this
study population to understand links between the microbiome
(Subramanian et al., 2014), host metabolism (Mayneris-Perxachs et
al., 2016), and growth will expand our understanding of howmicrobial
populations affect the nutritional status in these populations (Lunn,
2000; Brown et al., 2015; Kau et al., 2015; Blanton et al., 2016; Kosek
et al., 2016).

The analytical framework described here is the first attempt to ex-
plicitly examine causal pathways of EE. Our results demonstrate that ex-
posure to enteropathogens results in abnormal gut permeability,
inflammation, systemic immune activation, and growth failure, but
suggest that additional work incorporating other critical features of
host metabolic status and the microbiome are needed to explain the
gap between the insults attributable to EE and the observed cumulative
acquired deficits of growth in children in these populations.
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