475 research outputs found
Ab initio molecular dynamics simulations of Aluminum solvation
The solvation of Al and its hydrolyzed species in water clusters has been
studied by means of ab initio molecular dynamics simulations. The hexa-hydrate
aluminum ion formed a stable complex in the finite temperature cluster
simulation of one aluminum ion and 16 waters. The average dipole moment of
strongly polarized hydrated water molecules in the first solvation shell of the
hexa-hydrate aluminum ion was found to be 5.02 Debye. The deprotonated
hexa-hydrate complex evolves into a tetra-coordinated aluminate ion with two
water molecules in the second solvation shell forming hydrogen bonds to the
hydroxyl groups in agreement with the observed coordination.Comment: 12 pages in Elsevier LaTeX, 5 figures in Postscript, 2 last figures
are in color, submitted to Chemical Physics Letter
Continuous quantum measurement of a Bose-Einstein condensate: a stochastic Gross-Pitaevskii equation
We analyze the dynamics of a Bose-Einstein condensate undergoing a continuous
dispersive imaging by using a Lindblad operator formalism. Continuous strong
measurements drive the condensate out of the coherent state description assumed
within the Gross-Pitaevskii mean-field approach. Continuous weak measurements
allow instead to replace, for timescales short enough, the exact problem with
its mean-field approximation through a stochastic analogue of the
Gross-Pitaevskii equation. The latter is used to show the unwinding of a dark
soliton undergoing a continuous imaging.Comment: 13 pages, 10 figure
Traceability for Mutation Analysis in Model Transformation
International audienceModel transformation can't be directly tested using program techniques. Those have to be adapted to model characteristics. In this paper we focus on one test technique: mutation analysis. This technique aims to qualify a test data set by analyzing the execution results of intentionally faulty program versions. If the degree of qualification is not satisfactory, the test data set has to be improved. In the context of model, this step is currently relatively fastidious and manually performed. We propose an approach based on traceability mechanisms in order to ease the test model set improvement in the mutation analysis process. We illustrate with a benchmark the quick automatic identification of the input model to change. A new model is then created in order to raise the quality of the test data set
Electronic structure of nuclear-spin-polarization-induced quantum dots
We study a system in which electrons in a two-dimensional electron gas are
confined by a nonhomogeneous nuclear spin polarization. The system consists of
a heterostructure that has non-zero nuclei spins. We show that in this system
electrons can be confined into a dot region through a local nuclear spin
polarization. The nuclear-spin-polarization-induced quantum dot has interesting
properties indicating that electron energy levels are time-dependent because of
the nuclear spin relaxation and diffusion processes. Electron confining
potential is a solution of diffusion equation with relaxation. Experimental
investigations of the time-dependence of electron energy levels will result in
more information about nuclear spin interactions in solids
Modeling of Photoionized Plasmas
In this paper I review the motivation and current status of modeling of
plasmas exposed to strong radiation fields, as it applies to the study of
cosmic X-ray sources. This includes some of the astrophysical issues which can
be addressed, the ingredients for the models, the current computational tools,
the limitations imposed by currently available atomic data, and the validity of
some of the standard assumptions. I will also discuss ideas for the future:
challenges associated with future missions, opportunities presented by improved
computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010,
Utrecht, the Netherlands, March 15-17 201
Ultra-high modulation depth exceeding 2,400% in the optically-controlled topological surface plasmons
Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth ( defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 mu J cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.112115Ysciescopu
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Recommended from our members
Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV
The momentum distribution of electrons from semi-leptonic decays of charm and
bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is
measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC)
over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of
electrons from bottom to that from charm is presented. The ratio is determined
using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It
is found that the yield of electrons from bottom becomes significant above 4
GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative
quantum chromodynamics (pQCD) calculation agrees with the data within the
theoretical and experimental uncertainties. The extracted total bottom
production cross section at this energy is \sigma_{b\b^bar}= 3.2
^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.Comment: 432 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
