5 research outputs found

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    Get PDF
    The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness

    Precision Electroweak Measurements on the Z resonance.

    Get PDF
    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, , and the mass of the W boson, . These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than at 95% confidence level

    Precision electroweak measurements on the Z resonance

    No full text
    corecore