85 research outputs found

    Finite one dimensional impenetrable Bose systems: Occupation numbers

    Full text link
    Bosons in the form of ultra cold alkali atoms can be confined to a one dimensional (1d) domain by the use of harmonic traps. This motivates the study of the ground state occupations λi\lambda_i of effective single particle states ϕi\phi_i, in the theoretical 1d impenetrable Bose gas. Both the system on a circle and the harmonically trapped system are considered. The λi\lambda_i and ϕi\phi_i are the eigenvalues and eigenfunctions respectively of the one body density matrix. We present a detailed numerical and analytic study of this problem. Our main results are the explicit scaled forms of the density matrices, from which it is deduced that for fixed ii the occupations λi\lambda_i are asymptotically proportional to N\sqrt{N} in both the circular and harmonically trapped cases.Comment: 22 pages, 8 figures (.eps), uses REVTeX

    Correlation Amplitudes for the spin-1/2 XXZ chain in a magnetic field

    Full text link
    We present accurate numerical estimates for the correlation amplitudes of leading and main subleading terms of the two- and four-spin correlation functions in the one-dimensional spin-1/2 XXZ model under a magnetic field. These data are obtained by fitting the correlation functions, computed numerically with the density-matrix renormalization-group method, to the corresponding correlation functions in the low-energy effective theory. For this purpose we have developed the Abelian bosonization approach to the spin chain under the open boundary conditions. We use the numerical data of the correlation amplitudes to quantitatively estimate spin gaps induced by a transverse staggered field and by exchange anisotropy.Comment: 18 pages, 6 figures, 1 tabl

    Dynamical structure factor of the anisotropic Heisenberg chain in a transverse field

    Get PDF
    We consider the anisotropic Heisenberg spin-1/2 chain in a transverse magnetic field at zero temperature. We first determine all components of the dynamical structure factor by combining exact results with a mean-field approximation recently proposed by Dmitriev {\it et al}., JETP 95, 538 (2002). We then turn to the small anisotropy limit, in which we use field theory methods to obtain exact results. We discuss the relevance of our results to Neutron scattering experiments on the 1D Heisenberg chain compound Cs2CoCl4{\rm Cs_2CoCl_4}.Comment: 13 pages, 14 figure

    Dynamical spin correlations in Heisenberg ladder under magnetic field and correlation functions in SO(5) ladder

    Full text link
    The zero-temperature dynamical spin-spin correlation functions are calculated for the spin-1/2 two-leg Heisenberg ladder in a magnetic field above the lower critical field Hc1. The dynamical structure factors are calculated which exhibit both massless and massive excitations. These modes appear in different sectors characterized by the parity in the rung direction and by the momentum in the direction of the chains. The structure factors have power-law singularities at the lower edges of their support. The results are also applicable to spin-1 Heisenberg chain. The implications are briefly discussed for various correlation functions and the pi-resonance in the SO(5) symmetric ladder model.Comment: 15 pages, 6 figures, added references; final version to appear in Phys. Rev.

    Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions

    Full text link
    Consider a dd-dimensional antiferromagnet with a quantum disordered ground state and a gap to bosonic excitations with non-zero spin. In a finite external magnetic field, this antiferromagnet will undergo a phase transition to a ground state with non-zero magnetization, describable as the condensation of a dilute gas of bosons. The finite temperature properties of the Bose gas in the vicinity of this transition are argued to obey a hypothesis of ZERO SCALE-FACTOR UNIVERSALITY for d<2d < 2, with logarithmic violations in d=2d=2. Scaling properties of various experimental observables are computed in an expansion in Ï”=2−d\epsilon=2-d, and exactly in d=1d=1.Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz

    New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain

    Full text link
    In this paper we show how an infinite system of coupled Toda-type nonlinear differential equations derived by one of us can be used efficiently to calculate the time-dependent pair-correlations in the Ising chain in a transverse field. The results are seen to match extremely well long large-time asymptotic expansions newly derived here. For our initial conditions we use new long asymptotic expansions for the equal-time pair correlation functions of the transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising model. Using this one can also study the equal-time wavevector-dependent correlation function of the quantum chain, a.k.a. the q-dependent diagonal susceptibility in the 2d Ising model, in great detail with very little computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references added and minor changes of style. vs3: Corrections made and reference adde

    The Ising Susceptibility Scaling Function

    Full text link
    We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.Comment: PDFLaTeX, 50 pages, 5 figures, zip file with series coefficients and background data in Maple format provided with the source files. Vs2: Added dedication and made several minor additions and corrections. Vs3: Minor corrections. Vs4: No change to eprint. Added essential square-lattice series input data (used in the calculation) that were removed from University of Melbourne's websit

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore