235 research outputs found
Mission-level performance verification approach for the Euclid space mission
ESA's Dark Energy Mission Euclid will map the 3D matter distribution in our Universe using two Dark Energy probes: Weak Lensing (WL) and Galaxy Clustering (GC). The extreme accuracy required for both probes can only be achieved by observing from space in order to limit all observational biases in the measurements of the tracer galaxies. Weak Lensing requires an extremely high precision measurement of galaxy shapes realised with the Visual Imager (VIS) as well as photometric redshift measurements using near-infrared photometry provided by the Near Infrared Spectrometer Photometer (NISP). Galaxy Clustering requires accurate redshifts (Δz/(z+1)<0.1%) of galaxies to be obtained by the NISP Spectrometer.
Performance requirements on spacecraft, telescope assembly, scientific instruments and the ground data-processing have been carefully budgeted to meet the demanding top level science requirements. As part of the mission development, the verification of scientific performances needs mission-level end-to-end analyses in which the Euclid systems are modeled from as-designed to final as-built flight configurations. We present the plan to carry out end-to-end analysis coordinated by the ESA project team with the collaboration of the Euclid Consortium. The plan includes the definition of key performance parameters and their process of verification, the input and output identification and the management of applicable mission configurations in the parameter database
Identification of transitional disks in Chamaeleon with Herschel
Transitional disks are circumstellar disks with inner holes that in some
cases are produced by planets and/or substellar companions in these systems.
For this reason, these disks are extremely important for the study of planetary
system formation. The Herschel Space Observatory provides an unique opportunity
for studying the outer regions of protoplanetary disks. In this work we update
previous knowledge on the transitional disks in the Chamaeleon I and II regions
with data from the Herschel Gould Belt Survey. We propose a new method for
transitional disk classification based on the WISE 12 micron-PACS 70 micron
color, together with inspection of the Herschel images. We applied this method
to the population of Class II sources in the Chamaeleon region and studied the
spectral energy distributions of the transitional disks in the sample. We also
built the median spectral energy distribution of Class II objects in these
regions for comparison with transitional disks. The proposed method allows a
clear separation of the known transitional disks from the Class II sources. We
find 6 transitional disks, all previously known, and identify 5 objects
previously thought to be transitional as possibly non-transitional. We find
higher fluxes at the PACS wavelengths in the sample of transitional disks than
those of Class II objects. We show the Herschel 70 micron band to be an
efficient tool for transitional disk identification. The sensitivity and
spatial resolution of Herschel reveals a significant contamination level among
the previously identified transitional disk candidates for the two regions,
which calls for a revision of previous samples of transitional disks in other
regions. The systematic excess found at the PACS bands could be a result of the
mechanism that produces the transitional phase, or an indication of different
evolutionary paths for transitional disks and Class II sources.Comment: Accepted for publication in A&A: 11 March 2013 11 pages, 15 figure
HST/NICMOS observations of a proto-brown dwarf candidate
We present deep HST/NICMOS observations peering through the outflow cavity of
the protostellar candidate IRAS 04381+2540 in the Taurus Molecular Cloud-1. A
young stellar object as central source, a jet and a very faint and close (0.6")
companion are identified. The primary and the companion have similar colours,
consistent with strong reddening. We argue that the companion is neither a
shock-excited knot nor a background star. The colour/magnitude information
predicts a substellar upper mass limit for the companion, but the final
confirmation will require spectroscopic information. Because of its geometry,
young age and its rare low-mass companion, this system is likely to provide a
unique insight into the formation of brown dwarfs.Comment: Astronomy & Astrophysics Letters, in press; 4 pages, 2 figure
OA06.04. Dose-response of spinal manipulation for chronic low back pain: pain and disability outcomes from a randomized controlled trial
P02.157. Dose-response of spinal manipulation for low back pain: outside care outcomes from a randomized clinical trial
Characterizing the structure of diffuse emission in Hi-GAL maps
We present a study of the structure of the Galactic interstellar medium
through the Delta-variance technique, related to the power spectrum and the
fractal properties of infrared/sub-mm maps. Through this method, it is possible
to provide quantitative parameters which are useful to characterize different
morphological and physical conditions, and to better constrain the theoretical
models. In this respect, the Herschel Infrared Galactic Plane Survey carried
out at five photometric bands from 70 to 500 \mu m constitutes an unique
database for applying statistical tools to a variety of regions across the
Milky Way. In this paper, we derive a robust estimate of the power-law portion
of the power spectrum of four contiguous 2{\deg}x2{\deg} Hi-GAL tiles located
in the third Galactic quadrant (217{\deg} < l < 225{\deg}, -2{\deg} < b <
0{\deg}). The low level of confusion along the line of sight testified by CO
observations makes this region an ideal case. We find very different values of
the power spectrum slope from tile to tile but also from wavelength to
wavelength (2 < \beta < 3), with similarities between fields attributable to
components located at the same distance. Thanks to the comparison with models
of turbulence, an explanation of the determined slopes in terms of the fractal
geometry is also provided, and possible relations with the underlying physics
are investigated. In particular, an anti-correlation between ISM fractal
dimension and star formation efficiency is found for the two main distance
components observed in these fields. A possible link between the fractal
properties of the diffuse emission and the resulting clump mass function is
discussed.Comment: Accepted by Ap
Herschel/PACS Spectroscopic Survey of Protostars in Orion: The Origin of Far-infrared CO Emission
We present far-infrared (57-196 μm) spectra of 21 protostars in the Orion molecular clouds. These were obtained with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel Space observatory as part of the Herschel Orion Protostar Survey program. We analyzed the emission lines from rotational transitions of CO, involving rotational quantum numbers in the range J_(up) = 14-46, using PACS spectra extracted within a projected distance of ≾2000 AU centered on the protostar. The total luminosity of the CO lines observed with PACS (L_(CO)) is found to increase with increasing protostellar luminosity (L_(bol)). However, no significant correlation is found between L_(CO) and evolutionary indicators or envelope properties of the protostars such as bolometric temperature, T_(bol), or envelope density. The CO rotational (excitation) temperature implied by the line ratios increases with increasing rotational quantum number J, and at least 3–4 rotational temperature components are required to fit the observed rotational diagram in the PACS wavelength range. The rotational temperature components are remarkably invariant between protostars and show no dependence on L_(bol), T_(bol), or envelope density, implying that if the emitting gas is in local thermodynamic equilibrium, the CO emission must arise in multiple temperature components that remain independent of L_(bol) over two orders of magnitudes. The observed CO emission can also be modeled as arising from a single-temperature gas component or from a medium with a power-law temperature distribution; both of these require sub-thermally excited molecular gas at low densities (n(H_2) ≾ 10^6 cm^(–3)) and high temperatures (T≳2000 K). Our results suggest that the contribution from photodissociation regions, produced along the envelope cavity walls from UV-heating, is unlikely to be the dominant component of the CO emission observed with PACS. Instead, the "universality" of the rotational temperatures and the observed correlation between L_(CO) and L_(bol) can most easily be explained if the observed CO emission originates in shock-heated, hot (T≳2000 K), sub-thermally excited (n(H_2) ≾ 10^6 cm^(–3)) molecular gas. Post-shock gas at these densities is more likely to be found within the outflow cavities along the molecular outflow or along the cavity walls at radii ≳ several 100-1000 AU
A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 5.4 (540 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist
The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory
The Photodetector Array Camera and Spectrometer (PACS) is one of the three
science instruments on ESA's far infrared and submillimetre observatory. It
employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16x25
pixels, each, and two filled silicon bolometer arrays with 16x32 and 32x64
pixels, respectively, to perform integral-field spectroscopy and imaging
photometry in the 60-210\mu\ m wavelength regime. In photometry mode, it
simultaneously images two bands, 60-85\mu\ m or 85-125\mu\m and 125-210\mu\ m,
over a field of view of ~1.75'x3.5', with close to Nyquist beam sampling in
each band. In spectroscopy mode, it images a field of 47"x47", resolved into
5x5 pixels, with an instantaneous spectral coverage of ~1500km/s and a spectral
resolution of ~175km/s. We summarise the design of the instrument, describe
observing modes, calibration, and data analysis methods, and present our
current assessment of the in-orbit performance of the instrument based on the
Performance Verification tests. PACS is fully operational, and the achieved
performance is close to or better than the pre-launch predictions
The <i>Herschel</i> view of the massive star-forming region NGC 6334
Aims: Fundamental to any theory of high-mass star formation are gravity and turbulence. Their relative importance, which probably changes during cloud evolution, is not known. By investigating the spatial and density structure of the high-mass star-forming complex NGC 6334 we aim to disentangle the contributions of turbulence and gravity.
Methods: We used Herschel PACS and SPIRE imaging observations from the HOBYS key programme at wavelengths of 160, 250, 350, and 500 μm to construct dust temperature and column density maps. Using probability distribution functions (PDFs) of the column density determined for the whole complex and for four distinct sub-regions (distinguished on the basis of differences in the column density, temperature, and radiation field), we characterize the density structure of the complex. We investigate the spatial structure using the Δ-variance, which probes the relative amount of structure on different size scales and traces possible energy injection mechanisms into the molecular cloud.
Results: The Δ-variance analysis suggests that the significant scales of a few parsec that were found are caused by energy injection due to expanding HII regions, which are numerous, and by the lengths of filaments seen everywhere in the complex. The column density PDFs have a lognormal shape at low densities and a clearly defined power law at high densities for all sub-regions whose slope is linked to the exponent α of an equivalent spherical density distribution. In particular with α = 2.37, the central sub-region is largly dominated by gravity, caused by individual collapsing dense cores and global collapse of a larger region. The collapse is faster than free-fall (which would lead only to α = 2) and thus requires a more dynamic scenario (external compression, flows). The column density PDFs suggest that the different sub-regions are at different evolutionary stages, especially the central sub-region, which seems to be in a more evolved stage
- …
