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ABSTRACT

Context. Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar
companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation.
Aims. The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this
work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould
Belt Survey.
Methods. We propose a new method for transitional disk classification based on the WISE 12 µm − PACS 70 µm color, together with
inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied
the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II
objects in these regions for comparison with transitional disks.
Results. The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find six
transitional disks, all previously known, and identify five objects previously thought to be transitional as possibly non-transitional.
We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects.
Conclusions. We show the Herschel 70 µm band to be a robust and efficient tool for transitional disk identification. The sensitivity and
spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for
the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the
PACS bands could be either a result of the mechanism that produces the transitional phase, or an indication of different evolutionary
paths for transitional disks and Class II sources.
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1. Introduction

Protoplanetary disks surrounding young stars are known
to evolve over timescales of a few million years from a more
massive and optically thick phase (Class II objects) to optically
thin debris disk systems (Class III sources; see Williams &
Cieza 2011, for a recent review on the evolution of protoplan-
etary disks). There are several indications of this evolution with
time. Infrared (IR) observations of star-forming regions show
a systematic decrease of the IR flux with stellar age (Haisch
et al. 2001; Gutermuth et al. 2004; Sicilia-Aguilar et al. 2006;

? Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.
?? Appendix A is available in electronic form at
http://www.aanda.org

Currie & Kenyon 2009). In the optical and ultraviolet, obser-
vations show that the disk mass accretion rate decreases with
time as predicted by disk evolutionary models (Hartmann et al.
1998; Calvet et al. 2005; Fedele et al. 2010; Sicilia-Aguilar et al.
2010; Spezzi et al. 2012). Another important evidence is found
in deep mid-IR spectroscopic observations of young stars with
disks that show dust grain growth, crystallization, and settling
to the disk mid-plane. These phenomena are found to be corre-
lated with the evolution of the disk structure across two orders of
magnitude in stellar mass (Meeus et al. 2001; van Boekel et al.
2005; Kessler-Silacci et al. 2005; Apai et al. 2005; Olofsson et al.
2009).

Most of the evolution of protoplanetary disks is driven by
gravitational interaction and viscosity effects in the disk (Pringle
1981). However, some circumstellar disks show evidence of
a different evolutionary phase: they are known as transitional
disks. Compared to Class II disks, they display a clear dip in
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their spectral energy distribution (SED) at short-mid IR (typ-
ically around 8−12 µm) and a rising SED with flux excesses
similar to that of Class II sources at longer wavelengths (Strom
et al. 1989; Calvet et al. 2002; Espaillat et al. 2007; Andrews
et al. 2011). The dips in the SEDs are usually explained in terms
of dust-depleted regions and/or cavities in the disks, of typical
sizes of some tens of AU (see Merín et al. 2010; Andrews et al.
2011, and references therein).

Several processes have been proposed to explain these gaps
and holes: gravitational interaction with a low-mass companion
(Bryden et al. 1999; Rice et al. 2003; Papaloizou et al. 2007),
photo-evaporation (Clarke et al. 2001; Alexander et al. 2006a,b),
or grain growth (Dullemond & Dominik 2005; Tanaka et al.
2005; Birnstiel et al. 2012). Observational evidence of stellar
or substellar companions has been obtained in some cases (i.e.,
CoKu Tau4 or T Cha, see Ireland & Kraus 2008; Huélamo et al.
2011, respectively). If we were able to distinguish between these
different explanations would better understand the mechanisms
that produce the gaps in transitional disks, and the planetary for-
mation scenario. For this reason, any hint on which process gov-
erns the transition phase is relevant.

In this paper, we investigate the contribution of the far-IR
data from the Herschel Space Observatory (Pilbratt et al. 2010)
to our understanding of transitional disks. We present a new
method for transitional disk identification and apply it to the
sample of Class II objects in the Chamaeleon (Cha) I and II re-
gions. Section 2 describes the data reduction process, the sam-
ple selection, and the photometry extraction. Section 3 explains
the proposed method used in the paper to identify and reclassify
transitional disks. A more detailed discussion of the sample of
transitional disks is given in Sect. 4. Section 5 summarizes our
results.

2. Observations and sample

2.1. Observations

The Cha I and II regions were observed by the Herschel Space
Observatory in the context of the Gould Belt Survey (André
et al. 2010). These regions are part of the Chamaeleon molecular
cloud complex that also includes the Cha III cloud. The complex
is located at 150−180 pc (Whittet et al. 1997) and is one of the
most often studied low-mass star-forming regions because of its
proximity. Cha I has an estimated age of ∼2 Myr and a popula-
tion of ∼200 young stellar objects (Luhman et al. 2008; Winston
et al. 2012). Cha II harbors a smaller population (∼60) of young
sources (Young et al. 2005; Spezzi et al. 2008). Because of their
age and location, these regions are perfect scenarios for transi-
tional disk search and study.

Two sets of observations were used for each region: a first set
taken in parallel mode, using the PACS (70 and 160 µm Poglitsch
et al. 2010) and SPIRE (250, 350, and 500 µm, Griffin et al.
2010) instruments at a speed of 60′′/s, and the 100 µm PACS
band at 20′′/s from a second set in scan mode. The observing
strategy is described in more detail in André et al. (2010). The
total observing time in parallel mode for Cha I was ∼8 h and 6 h
for Cha II, covering a total area of ∼9 deg2 (∼5.5 and 3.5 deg2).
The PACS 100 µm images covered 2.6 deg2 in Cha I and 2 deg2

in Cha II, and add up to a total time of 8 h and 6 h, respectively
(see Winston et al. 2012, and Spezzi et al. in prep. for a detailed
description of the data sets). Obsids for Cha I are 1342213178,
1342213179 (parallel mode) and 1342224782,1342224783
(scan mode), and obsids 1342213180,1342213181 (parallel
mode), and 1342212708, 1342212709 (scan mode) for Cha II.

The data were pre-processed using the Herschel interac-
tive processing environment (HIPE, Ott 2010) version 9. The
final maps were created using Scanamorphos (Roussel 2012)
for PACS, and the destriper algorithm included in HIPE for
SPIRE. These two algorithms are optimized for regions such
as Chamaeleon, which have bright extended emission. Figure 1
shows a three-color composite image of Cha I (blue: 70 µm,
green: 160 µm, and red: 250 µm).

2.2. Sample selection

Luhman et al. (2008) and Luhman & Muench (2008) presented
the largest census of young stellar objects (YSOs) members of
Cha I including Spitzer photometry, and Alcalá et al. (2008) and
Spezzi et al. (2008) did the same for Cha II. We selected from
these studies the sources classified as Class II with known ex-
tinction values. Since we aim to classify transitional disks, we
also included T25, flagged as Class III in Luhman et al. (2008)
but later found to be a transitional source in Kim et al. (2009).
We rejected objects with signal-to-noise ratio (S/N) < 5 in any of
the 2MASS bands to ensure a good photometry estimation and
coordinates measurement. The final sample of Class II objects is
comprised of 119 sources.

To our knowledge, 12 sources in the sample are classified as
transitional disk candidates in the literature: SZ Cha, CS Cha,
T25, T35, T54, T56, and CHXR 22E from Kim et al. (2009),
C7-1 from Damjanov et al. (2007), CR Cha, WW Cha, and ISO-
ChaI 52 from Espaillat et al. (2011), and ISO-ChaII 29 from
Alcalá et al. (2008).

2.3. Photometry

We extracted Herschel photometry of the Class II sample fol-
lowing these steps:

1. We used the Sussextractor algorithm (Savage & Oliver 2007)
in HIPE to detect sources with an S/N > 5 in the PACS
images. We then visually checked that no obvious source was
missing.

2. We cross-matched the initial sample with the detections in
the PACS images, using a search radius of 5′′. This ra-
dius was chosen based on the size of the point spread func-
tions (PSFs) at these wavelengths (∼5.8′′× 12.1′′, 6.7′′×
7.3′′, and 11.4′′× 13.4′′, for the 70, 100, and 160 µm bands
at the corresponding observing speeds). We note that the
background emission becomes more significant for longer
wavelengths, producing false detections because of bright
filaments and ridges. To avoid possible mismatches, we
considered as Herschel-detected sources only those with
counterparts at any PACS band. For SPIRE, we found the
Sussextractor output to be highly contaminated with false
detections. Therefore, we visually inspected the positions of
the detected sources individually for these bands.

3. We performed aperture photometry centered on the 2MASS
coordinates of each detection. We used the recommended
aperture radii and background estimation annulus for each
band (see the PACS point-source flux calibration techni-
cal note from April 2011, and Sect. 5.7.1.2 of the SPIRE
data reduction guide). The values for the apertures, inner
and outer annulus radii (in this order) are 12′′, 20′′, 30′′for
70 and 100 µm, 22′′, 30′′, 40′′for 160 µm, 22′′, 60′′, 90′′
for 250 µm, 30′′, 60′′, 90′′ for 350 µm, and 42′′, 60′′, 90′′
for 500 µm.
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Fig. 1. Left: three-color composite
image of the Cha I region (blue:
PACS 70 µm, green: PACS 160 µm,
red: SPIRE 250 µm). Circles mark the
position of transitional disks detected in
the Herschel images and classified with
the proposed method (see Sect. 3.3).
Triangles show sources not fulfilling
our selection criteria, and squares
represent non-detected sources. Right:
thumbnails of the 70 µm Herschel maps
(50 ′′ × 50 ′′). The color scale ranges
from the median value (background
level) to 5σ over this value (black). In
both figures, north is up, and east is
left. Note that WW Cha is located on a
bright core.

4. Since aperture photometry was used, objects close to bright
filaments or cores are likely to suffer from contamina-
tion. Also, given the size of the PSF, no photometric mea-
surements can be performed for close objects (separation
less than ∼10′′). Therefore we rejected ten detections that
showed obvious problems in their photometry or enclosed
more than one object.

After excluding the transitional disks, the final result of this pro-
cess is 41 Class II sources detected at any PACS band (26 and 15
in Cha I and Cha II, respectively), nine of them detected also
with SPIRE.

We checked that the obtained photometry was consistent
with that from other map-making algorithms (such as photPro-
ject for PACS), and found no significant deviation.

We visually inspected the position of non-detected tran-
sitional disks in the original sample and found that C7-1,
CHXR 22E, and ISO-ChaII 29 are not detected at any of the

Herschel bands. Additionally, ISO-ChaI 52 is not detected by
Sussextractor at 70 µm, but it is at 100 µm. The object is visu-
ally found in the 70 µm image with a flux of 150 mJy over a
background root mean square (rms) of 40 mJy. We therefore in-
cluded the 70 µm flux in our analysis. Source T25 is not in the
field of view of the 100 µm map, which is smaller than the par-
allel mode observations. Coordinates and stellar parameters for
the transitional disks in this study can be found in Table 1.

2.4. Photometric uncertainties and upper limits

The absolute calibration errors for PACS and SPIRE are 5%
and 7%, respectively (see PACS and SPIRE observer manuals).
To ensure a conservative error estimation, we used a 15% error
value for PACS and 20% for SPIRE, taking into account that the
background emission becomes increasingly stronger at longer
wavelengths.
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Table 1. Coordinates and stellar parameters of the 12 transitional disk candidates analyzed in this work.

Name RAJ2000 DecJ2000 AV SpT T∗ L∗ M∗ R∗ Refs.
(mag) Type (K) (L�) (M�) (R�)

CR Cha 10:59:06.97 −77:01:40.3 1.5 K2 4900 3.5 1.9 2.6 1, 2, 3, 4, 5, 6
CS Cha 11:02:24.91 −77:33:35.7 0.25 K6 4205 1.5 0.9 2.3 1, 2, 3, 5, 6, 7, 8, 9
SZ Cha 10:58:16.77 −77:17:17.1 1.90 K0 5250 1.9 1.4 1.7 1, 2, 3, 4, 5, 6, 7, 8, 9
WW Cha 11:10:00.11 −76:34:57.9 4.8 K5 4350 6.5 1.2 4.5 1, 2, 3, 4, 5, 6, 7, 8
T25 11:07:19.15 −76:03:04.9 0.78 M3 3470 0.3 0.3 1.5 1, 2, 3, 4, 5, 6, 7, 9
T35 11:08:39.05 −77:16:04.2 3.5 M0 3850 0.4 0.6 0.5 1, 2, 3, 4, 5, 6, 7, 9
T54 11:12:42.69 −77:22:23.1 1.78 G8 5520 4.1 2.4 1.5 1, 2, 3, 4, 5, 6, 7, 9, 10, 11
T56 11:17:37.01 −77:04:38.1 0.23 M0.5 3720 0.4 0.5 1.6 1, 2, 3, 4, 5, 6, 7, 9
ISO-ChaI 52 11:04:42.58 −77:41:57.1 1.3 M4 3370 0.1 0.3 1.0 2, 3, 4, 5, 7
C7-1 11:09:42.60 −77:25:57.9 5.0 M5 3125 . . . . . . . . . 3, 4, 5, 7, 12
CHXR 22E 11:07:13.30 −77:43:49.9 4.79 M3.5 3400 0.2 . . . . . . 3, 5, 7, 9
ISO-ChaII 29 12:59:10.14 −77:12:13.9 5.57 M0 3850 0.65 . . . 1.85 13, 14

References. (1) Gauvin & Strom (1992); (2) Espaillat et al. (2011); (3) Luhman (2007); (4) Luhman & Muench (2008); (5) Manoj et al. (2011);
(6) Henning et al. (1993); (7) Luhman et al. (2008); (8) Belloche et al. (2011); (9) Kim et al. (2009); (10) Lafrenière et al. (2008); (11) Preibisch
(1997); (12) Damjanov et al. (2007); (13) Spezzi et al. (2008); (14) Alcalá et al. (2008).

Table 2. Herschel photometry of the 12 transitional disks in the sample.

Name F70 µm F100 µm F160 µm F250 µm F350 µm F500 µm
(Jy) (Jy) (Jy) (Jy) (Jy) (Jy)

Detected sources
CR Cha 1.61± 0.24 2.19± 0.33 2.74± 0.41 2.37± 0.47 1.69± 0.34 1.09± 0.22
CS Cha* 3.08± 0.46 2.82± 0.42 2.32± 0.35 0.88± 0.18 0.38± 0.08 0.13± 0.03
SZ Cha 3.88± 0.58 3.63± 0.54 3.86± 0.58 2.85± 0.57 1.94± 0.39 1.14± 0.23
WW Cha 25.91± 3.88 32.32± 4.85 27.3± 4.10 24.92± 4.99 12.44± 2.49 6.79± 1.36
T25 0.52± 0.08 . . . 0.50± 0.08 0.20± 0.04 0.11± 0.02 <0.10
T35 0.38± 0.06 0.36± 0.06 0.200± 0.03 <1.69 <2.10 <2.06
T54 0.60± 0.09 0.77± 0.12 0.98± 0.15 0.46± 0.09 <1.04 <1.18
T56 0.68± 0.10 0.57± 0.09 0.30± 0.05 0.30± 0.05 0.30± 0.06 0.11± 0.02
ISO-ChaI 52 0.15± 0.02 0.15± 0.02 <1.07 <1.42 <2.06 <2.04

Undetected sources
C7-1 <0.04 <0.08 <0.94 <1.24 <1.69 <2.10
CHXR 22E <0.08 <0.14 <1.10 <1.19 <1.18 <0.96
ISO-ChaII 29 <0.04 <0.07 <0.85 <1.41 <2.65 <3.00

Notes. * SPIRE photometry is very likely contaminated for this source (see appendix).

When no source was detected, we computed an upper limit
calculating the rms of 100 apertures taken around the source, us-
ing the same aperture radii and correction factors as for the de-
tections. The extracted PACS and SPIRE fluxes for the 12 tran-
sitional candidates in the considered sample are reported in
Table 2.

3. Identification of transitional disks

3.1. Photometric selection

Several selection criteria have been used in the past to separate
transitional disks from Class II sources. Fang et al. (2009) used a
color−color diagram based on the Ks band and on the [5.8], [8.0]
and [24] Spitzer bands. Muzerolle et al. (2010) proposed a clas-
sification criterion based on the slope of the SED between 3.6
and 4.8 µm and between 8 to 24 µm. Cieza et al. (2010) also
used a color−color diagram, based on the Spitzer photometry at
3.6, 4.5 and 24 µm. However, all these methods were found to
suffer from different contamination levels, as explained in Merín
et al. (2010).

There is a high diversity in the morphology of transitional
disks, hence there are various definitions. However, most of them
share two common characteristics: (1) they have low or no ex-
cess with respect to the photosphere up to the λturn−off or the pivot

point, usually found around ∼8−10 µm, and (2) they have strong
excesses for longer wavelengths (see Sect. 7.1 in Williams &
Cieza 2011, and references therein). This is translated into a de-
creasing slope of the SED up to λturn−off , and an increasing one
for longer wavelengths.

To identify transitional disks using Herschel photome-
try, we computed two spectral indexes (α): one between the
Ks band and 12 µm (αKs−12), and the other between 12 µm
and 70 µm (α12−70). The spectral index is defined as αλ1−λ2 =
log(λ1Fλ1 )−log(λ2Fλ2 )

log(λ1)−log(λ2) , where λ is measured in µm and Fλ in
erg s−1 cm−2 s−1. Therefore, α traces the slope of the SED in the
considered range (α > 0 → rising SED, α < 0 → decreasing
SED). This spectral index has been intensively used since its in-
troduction by Lada & Wilking (1984) to classify protostars and
young objects.

Figure 2 demonstrates that these two slopes together effi-
ciently separate the two populations. The separation is clearer
in the 12−70 µm axis, where α12−70 < 0 corresponds to typi-
cal Class II sources, and α12−70 > 0 is indicative of the tran-
sitional nature of the objects. This separation in the slope be-
tween 12 µm and 70 µm is an expected feature: for short-mid
IR wavelengths, the slope depends strongly on the presence of
weak excess, or on the spectral type of the star if there is no
excess. On the other hand, the definition of transitional disks
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Fig. 2. SED slope between the 12 and 70 µm (α12−70) as a function of
the SED slope between the Ks-band and 12 µm (αKs−12). Transitional
disks from the literature meeting the selection criterion are marked as
red dots, green downward arrows are those for which only upper limits
could be estimated. Class II objects are black dots. Blue squares are pre-
transitional disks from Espaillat et al. (2011). There is a clear separation
between Class II and transitional disks due to the different shape of their
SED. The single black dot with α > 0 is ESO-Hα 559, an edge-on disk.
This diagram shows the potential for transitional disk classification us-
ing the 70 µm band.

itself guarantees a positive slope for longer wavelengths. This
separation also reveals the usefulness of the Herschel data for
this classification. As a result of the selection method, two disks
reported in Espaillat et al. (2011), WW Cha and CR Cha, are
not separated from Class II objects and we confirm that they do
not deviate significantly from the median SED of the Class II
sources in Cha I and II (Fig. 5). Based on this evidence, we con-
sider them as non-transitional. The rest of the transitional disks
are properly separated from Class II sources. The computed up-
per limits also allow us to classify C7-1 and ISO-ChaII 29 as
non-transitional using this method.

Interestingly, one Class II source shows α12−70 > 0 in the for-
mer diagram. The object, called ESO-Hα 559, has been recently
identified as a probable edge-on disk in Robberto et al. (2012) by
modeling its SED. Its underluminosity with respect to its spec-
tral type also supports this scenario. We find this type of object
to be a source of contamination for this method: edge-on disks
can mimic the SED of transitional sources. Their geometry will
cause a high circumstellar extinction level, blocking the light
from the central star at short wavelengths (Stapelfeldt & Moneti
1999; Wood et al. 2002; Duchêne et al. 2010; Huélamo et al.
2010). The disk becomes optically thin for longer wavelengths
(>24 µm) and the emission from the star can pass through the
disk, resulting in an increase of the flux and hence a positive
slope of the SED. When their spectral type is known, edge-on
disks can be identified in Hertzsprung−Russell diagrams, as they
are often underluminous.

We also note that this method is not suitable for detecting a
small subsample of transitional disks called anemic (Lada et al.
2006), homologously depleted (Currie & Kenyon 2009), or weak
excess disks (Muzerolle et al. 2010). They are defined as objects
with low excess at all infrared wavelengths and show αexcess < 0.
For this reason, they cannot be found with the criterion proposed
in this work. On the other hand, the rest of transitional disks
should display α12−70 > 0 and hence can be properly separated.
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Fig. 3. Average brightness radial profile (black line) for a point source
(SZ Cha, left) and an extended source (T54, right) compared to the ob-
servational PSF radial profile (red line). The error bars are the rms of
the values. All considered sources present the same behavior as SZ Cha
except for T54, whose observed radial profile is clearly above the PSF
profile, indicating that this source is extended and all others are point-
like in Herschel images.

3.2. Morphological classification

We checked whether any of the remaining seven transitional
disks were spatially resolved in the Herschel images. Extended
emission could indeed indicate contamination by a coincident
background source, a close by object, or the extended back-
ground emission, as shown in Matrà et al. (2012).

Given the estimated distance of 160 pc to the Cha I molecular
cloud (Whittet et al. 1997; Luhman & Muench 2008), the full-
width at half-maximum of the PSFs for the three PACS bands
(∼6′′, 7′′and 12 ′′, see the official PACS PSF document1) would
allow us to resolve structures of ∼900−2000 AU. It is difficult to
define an outer radius for protoplanetary/transitional disks, but
typical values range from some tens to ∼1000 AU in the most
extreme cases (Williams & Cieza 2011). Direct imaging of pro-
plyds and disks in the Trapezium cluster by Vicente & Alves
(2005) showed the size distribution to be contained within 50
and 100 AU. On the other hand, the Rc parameter (defined as
the radius where the surface density deviates significantly from
a power law and the disk density declines rapidly, see Williams
& Cieza 2011) has typical values between 15−230 AU (Hughes
et al. 2008; Andrews et al. 2009, 2010).

This suggests that none of these sources should be resolved
in the Herschel images. In each of the PACS band, we compared
the radial profile of the transitional disks with an empirical PSF
constructed using clean isolated point sources. Of the nine de-
tected sources, only T54 was found to be extended, as shown in
Fig. 3. Matrà et al. (2012) showed that the excess beyond 100 µm
is likely not related to the source, and therefore not originating
from a circumstellar disk. This interpretation results in a sub-
stantial decrease in the IR excess coming from T54, making its
SED not representative of the characteristic inner-hole geometry
around transitional disks. The case of T54 shows that one needs
to verify the origin of the IR excess in protoplanetary/transitional
disks.

1 http://herschel.esac.esa.int/twiki/pub/Public/
PacsCalibrationWeb/bolopsf_20.pdf

A115, page 5 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220960&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220960&pdf_id=3
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/ bolopsf_20.pdf
http://herschel.esac.esa.int/twiki/pub/Public/PacsCalibrationWeb/ bolopsf_20.pdf


A&A 552, A115 (2013)

We found no other extended sources in the Herschel images
and conclude that all the detected transitional disks have far-IR
excesses related to the sources. Therefore all but one (T54) of the
transitional disk candidates in the Cha I and II regions are con-
firmed to be point-sources, up to the resolution of the Herschel
PACS and SPIRE instruments.

3.3. Transitional disk classification

Thanks to the new Herschel photometric data, we are able to
reclassify the already known transitional disks in the Cha I and II
regions based on the shape of their SEDs. CS Cha, SZ Cha, T25,
T35, T56, and ISO-ChaI 52 show a typical transitional disk SED.

Two objects from Espaillat et al. (2011) do not fulfill our se-
lection criterion, which is tuned to identify clear signatures of in-
ner holes. These sources were selected by Espaillat et al. (2011)
based on their silicate feature strengths, and therefore the dif-
ferent results obtained in this study are not surprising. CR Cha
shows weak excess up to 2 µm and a typical Class II SED for
longer wavelengths. The SED of WW Cha does not display any
decrease in its IR emission, typical for transitional disks. Indeed,
the Herschel images support one of the scenarios proposed by
Espaillat et al. (2011): WW Cha is located on one of the cores
in Cha I and presumably accretes at a high rate. Furthermore,
it shows a strong excess along the whole wavelength range and
therefore cannot be considered as a transitional disk, but is more
likely a Class II source. The dust-rich environment around WW
Cha might also contaminate the Herschel photometry and ac-
count for part of the observed IR excess emission. These sources
are then probably non-transitional. Moreover, the morphological
analysis of the candidates shows that T54 is extended (Fig. 3)
and hence a misclassified object.

Conclusions for the non-detected sources are more compli-
cated to draw, and they should be treated with caution, since a
non-detection does not directly reject a candidate, but could sim-
ply be due to a sensitivity bias. The computed upper limits for
C7-1 and ISO-ChaII 29 exclude them as transitional disks ac-
cording our selection criterion. ISO-ChaII 29 is a special case:
the upper limit of 35 mJy in PACS 70 µm is lower than the de-
tection of 56.90 ± 8.63 mJy in the MIPS 70 µm band indicated
in Alcalá et al. (2008), and these two measurements are in-
consistent. ISO-ChaII 29 shows both strong Li absorption and
Hα emission, which confirms it as a YSO (Spezzi et al. 2008).
However, it is the only transitional disk in the sample with pho-
tospheric fluxes up to 24 µm in our and the Alcalá et al. (2008)
sample. These authors also found it to have the steepest αexcess.
This object is therefore probably misclassified in the Spitzer im-
ages, as strongly suggested by the non-detection in any of the
Herschel bands and by the outlier nature of the object if the
MIPS detection is considered. We therefore reclassify it as a non-
transitional source. We stress that our method is unable to detect
transitional disks with weak excesses, and deeper observations
should be made to confirm or reject the presence of disks and
holes in these systems. In the case of CHXR 22E it is not possi-
ble to extend the analysis further without making strong assump-
tions about the disk mass and morphology. For this reason, we
exclude it for the remainder of the study.

As mentioned in Sect. 3.1, it is important to note that the pro-
posed criterion will only select transitional objects with increas-
ing slopes between 12 and 70 µm. This feature is unlikely to be
produced by grain growth alone (see Williams & Cieza 2011,
for a review on the topic). As a result, the proposed classifica-
tion criterion may be biased toward detecting only transitional
disks with large inner holes produced by photoevaporation, gap

opening by unresolved companions, giant planet formation, or
a combination of these scenarios. Physical interpretation of this
peculiar SED shapes requires detailed modeling, and there is no
full consensus yet on which physical phenomena can be safely
attributed to each type of SED (see e.g. Birnstiel et al. 2012).
A more detailed analysis of this topic will help to determine the
real impact of this selection effect.

From the initial sample of 12 transitional disk candidates in
the Cha I and II regions we confirm six objects to be transitional
disks, reject five sources by photometric or morphological crite-
ria, and leave one object unclassified since it is not detected in
the Herschel images. These numbers imply a significant (∼45%)
observed contamination level in the transitional disk sample con-
sidered in this study. Given the small number statistics, it is pre-
mature to extend this result to other samples. However, this result
calls for a revision of the known transitional disks: if applica-
ble to the whole sample, this contamination level would imply
a shorter transitional-phase lifetime and hence could shed some
light on the mechanisms responsible for the evolution of proto-
planetary disks.

4. Transitional disks in the sample

We searched for additional photometric values in the literature
for each of the transitional objects in our sample. Gauvin &
Strom (1992) reported optical photometry for all sources in Cha I
except for CHXR 22E, ISO-ChaI 52, and C7-1. We have queried
the VizieR catalog service and retrieved additional data for these
targets from GALEX (Martin et al. 2005), 2MASS (Skrutskie
et al. 2006), DENIS (DENIS Consortium 2005), WISE (Wright
et al. 2010), and AKARI (Murakami et al. 2007). To avoid pos-
sible mismatching, we chose a search radius of 1 ′′around the
2MASS coordinates. We rejected DENIS photometry for T25,
T35, and ISO-ChaI 52, since it clearly disagreed with the rest
of photometric data. (Sub)millimeter data at 870 µm and 1.3 mm
were also included from Belloche et al. (2011) and Henning et al.
(1993), respectively. Spitzer photometric measurements were in-
cluded from Damjanov et al. (2007), Luhman et al. (2008),
Luhman & Muench (2008), and Alcalá et al. (2008). We also
retrieved the Spitzer IRS spectra from the CASSIS database
(Lebouteiller et al. 2011). The resulting SEDs for all sources are
shown in Figs. 4−6. Thumbnails of the transitional disks as seen
in the Herschel 70 µm images can be found in Fig. 1. We note
here that the cross-shaped PSF at 70 µm is produced by the par-
allel mode observations, and does not represent resolved objects.

We compared the Herschel fluxes of the sample of transi-
tional disks with the Class II sources in the same region. For
this purpose, we first inspected the SEDs of all Class II sources
(after removing the transitional disks sample). We identified
and removed one object (J11111083-7641574) previously clas-
sified as an edge-on disk (Luhman & Muench 2008; Robberto
et al. 2012). It could not be identified in the slope-slope dia-
gram since it is only detected at 100 µm. The object is present
in the Herschel images at 70 µm, but was not detected by
Sussextractor with the selected threshold. We built the median
SED of all Class II objects, extinction corrected and normalized
to the J-band. We also computed SED of the first (<25%) and
fourth (>75%) quartiles. Given the low detection numbers for
the SPIRE bands, we used the lowest and highest values instead
of the quartiles at those wavelengths. We included photometry
from the R, I, 2MASS, Spitzer, and Herschel bands. We con-
sidered all objects detected in each band (regardless of whether
they were undetected in the other bands). The obtained values
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Fig. 4. SEDs of the detected transitional disk candidates, confirmed by our classification criterion and updated with the fluxes from Herschel. Black
dots are the dereddened observed values from the literature, downward black arrows are flux upper limits from the literature. Herschel data are
represented in red (squares for detections, downward arrows for upper limits). Uncertainties are within symbol sizes. The IRS spectra from Manoj
et al. (2011) (black solid lines) and the photospheres (dashed black lines from the NextGen models from Allard et al. 2012) are also plotted. The
median Class II SED (blue solid line) and the first and fourth quartiles (blue area) are shown (see also Sect. 4 and Table 3).
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Fig. 5. SEDs of transitional disk that do not fulfill our classification criteria. CR Cha and WW Cha display clear Class II SED. T54 appears
extended in the Herschel images. Symbols are as in Fig. 4.
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Fig. 6. SED of the transitional disk candidates not detected by Herschel for which only flux upper limits could be estimated. Symbols are the same
as in Fig. 4. The upper limits at 70 µm for C7-1 and ISO-ChaII 29 allow us to classify them as non-transitional with our selection criteria.
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Table 3. Normalized flux densities of the median SED, upper SED (fourth quartile) and lower SED (first quartile) of the Class II objects in Cha I
and Cha II, after extinction correction.

λ (µm) Median transitional Median Upper Lower Detections
(Fλ arbitrary units)

R 1.01 0.79 1.00 0.38 32
I 1.22 1.02 1.34 0.74 32
J 1.00 1.00 1.00 1.00 107
H 0.67 0.67 0.72 0.61 107
Ks 0.35 0.38 0.45 0.32 107
IRAC 3.6 7.1e-2 0.10 0.15 7.5e-2 78
IRAC 4.5 3.2e-2 5.5e-2 8.5e-2 4.0e-2 70
IRAC 5.8 2.0e-2 3.0e-2 4.5e-2 2.2e-2 86
IRAC 8.0 4.7e-3 1.5e-2 2.7e-2 1.1e-3 78
MIPS 24 3.5e-3 2.5e-3 4.4e-3 1.6e-4 95
PACS 70 1.8e-3 4.2e-4 7.0e-4 3.0e-4 23
PACS 100 6.8e-4 2.5e-4 3.5e-4 1.2e-4 41
PACS 160 3.5e-4 7.7e-5 1.5e-4 5.5e-5 19
SPIRE 250 5.7e-5 5.1e-5 1.2e-4 1.3e-5 9
SPIRE 350 1.9e-5 2.9e-5 7.5e-5 2.8e-6 9
SPIRE 500 5.2e-6 9.1e-6 2.3e-5 6.3e-7 7

Notes. Transitional disks are not included. The number of stars detected in each band is also indicated. For comparison, we also include the median
value for the six transitional disks detected in this study, although we stress its very low number statistics.

are given in Table 3. We also found the median SED not to vary
significantly when only K or M type stars were considered.

The comparison between the SEDs of transitional disks and
the median SED of Class II objects in Cha I and II shows a sys-
tematic difference in the 70−160 µm range. The six transitional
disks found with the selection criterion used in this study display
a clear excess over the obtained Class II median SED, and all of
them are over the fourth quartile level (uncertainties for T35 are
consistent with a flux value below this level).

Even though this median SED was built with a relatively
small statistical sample, this result clearlyshows that transitional
disks are brighter at 70−160 µm than typical Class II sources in
these regions.

Similar phenomena were already tentatively described by
Winston et al. (2012) in a preliminary study of the YSO pop-
ulation of Cha I and by Cieza et al. (2011) for T Cha, but here
we provide consistent results derived from a much larger sample
of transitional disks. This excess was not previously found by
large programs using the Spitzer Space Telescope, such as cores
2 disks (Evans et al. 2003, 2009). This can probably be explained
by the lower sensitivity of Spitzer at 70 µm.

A bias toward the brightest objects could affect these re-
sults in two different ways: we might miss the faintest transi-
tional disks and the faintest Class II sources. In the first case, the
Herschel data are enough to classify eleven out of the twelve pre-
viously known transitional objects in the sample (less than 10%
objects missed). This suggests that the proposed method does
not suffer from a strong bias effect. The existence of an unknown
population of transitional disks not identified with Spitzer cannot
be ruled out (although this possibility is unlikely, see Merín et al.
2010). However, this would not alter the systematic difference
found at the 70−160 µm range between the detected previously
known transitional disks and Class II objects in these regions. On
the other hand, the second scenario (e.g. missing faint Class II
sources) would imply lower values for the Class II median SED
in the Herschel range, producing an even stronger difference be-
tween transitional and Class II disks. As a result, the Class II
median SED computed here should be considered as an upper
limit.

If the excess at PACS bands is a common feature of tran-
sitional objects, two explanations can be proposed to explain
it: (1) transitional disks are not the result of the evolution of
Class II sources, but a parallel evolutionary path, or (2) the dis-
crepancy between transitional disks and Class II objects is pro-
duced during the transitional phase (maybe even by the same
mechanism that causes the transitional disk evolution). In this
case, the piling-up of mass at some point of the outer disk could
produce the steep slope and the excess found at 70 µm (Williams
& Cieza 2011). With the available data it is not possible to favor
any of these scenarios, so we leave this question open to future
studies.

A larger and statistically more significant sample of transi-
tional disks and modeling are required to confirm whether the
difference found at the PACS bands applies to the whole transi-
tional disk sample, to identify the real cause (or causes) of the
excess, and to understand whether transitional disks are indeed
a later stage of Class II objects or follow a different evolutionary
path.

5. Conclusions

We presented a new method for identifying transitional disks
based on the slope between the WISE 12 µm and PACS 70 µm
bands. We have applied this method to the whole sample of
known Class II objects in the Cha I and II star-forming re-
gions. We were able to separate known transitional sources from
Class II objects, and reclassified five objects as possibly non-
transitional. This method could produce false positives due to the
presence of edge-on disks, and Hertzsprung–Russell diagrams
should be used to reject underluminous sources. As a result, we
found an observed contamination level of ∼45% among previ-
ously identified transitional disks in these regions. The size of
our sample is relatively small, and these results cannot be ap-
plied to the whole transitional disk sample. However, a revision
of the transitional disk population in other star-forming regions
is warranted to determine the real contamination level and to ac-
count for its effects.

We built the median SED of Class II sources in the regions,
and found significantly higher PACS fluxes in the transitional
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disks compared to it. This excess could be produced during the
transitional phase, or be explained in terms of a different evolu-
tionary path for transitional disks and Class II sources.

Future studies of other star-forming regions observed by the
Herschel Space Observatory will clarify the contamination level
of the sample of known transitional objects, and will provide
stronger evidence for a systematic excess at PACS wavelengths
in transitional disks with respect to Class II sources.
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Appendix A: Literature review of the individual
transitional objects detected with Herschel

A.1. CS Cha

CS Cha was first studied by Gauvin & Strom (1992), who found
evidence that it harbors a disk with inner holes. It is known to
be a spectroscopic binary system, as confirmed by Guenther
et al. (2007) (period ≥7 years, minimum mass of the compan-
ion ∼0.1 M�), although previously Takami et al. (2003) sug-
gested this option based on the large gap found in its disk.
This previously unknown feature is probably the reason for the
spectral type inconsistency found in the literature (Henize &
Mendoza 1973; Appenzeller 1977; Rydgren 1980; Appenzeller
et al. 1983; Luhman 2004). In this study we used the K6 spec-
tral type found by Luhman (2007). The binary nature makes the
disk around CS Cha into a circumbinary disk. The disk has been
modeled intensively, initially excluding the effect of the binary
system (Espaillat et al. 2007, 2011) and evidence of an inner
hole of ∼40 AU was found. Espaillat et al. (2011) also pointed
out the need for a different mass distribution in CS Cha com-
pared to that of disks around single stars. A more recent analysis
by Nagel et al. (2012) also accounted for the binary effect. To
reproduce the variations found at the IR wavelengths, the model
includes the emission from the inner disk structure generated by
the double system, with a ring and streams of material falling
from the ring to the circumstellar disks around the individual
stars. Another 2MASS source is found at 5′′ away. It is 6 magni-
tudes weaker than CS Cha in the 2MASS J band and undetected
in the rest of the 2MASS bands. Contamination from this object
is therefore very unlikely.

CS Cha is located in front of a bright background. Therefore,
the SPIRE fluxes are very likely underestimated because the
background emission was probably overestimated during the
photometry extraction.

A.2. SZ Cha

This source was cataloged as a K0 star by Rydgren (1980) and
was first identified as a disk with a possible inner gap by Gauvin
& Strom (1992). Luhman (2007) reviewed its properties, and it
was lately confirmed by Kim et al. (2009) as a transitional disk.
It has sometimes been referred to as a pretransitional disk, given
the small excess found at 3−10 µm. The first modeling results
by Kim et al. (2009) suggested an inner disk radius of ∼30 AU.
Espaillat et al. (2011) modeled this object in detail, noting flux
variations from IRS spectra at different epochs on periods shorter
than three years. These variations are attributed to changes in the
height of the optically thick disk wall (from 0.006 to 0.08 AU),
and they do not modify the 10 µm silicate emission feature. SZ
is known to be a wide binary (Vogt et al. 2012). A companion
is found at ∼5′′(projected distance of 845 AU), which could be
causing truncation of the outer disk. The contribution of this
source to the total measured fluxes in this study is likely to be
negligible, since it is 4 magnitudes weaker than SZ Cha in the
2MASS J band. However, the possibility of an increase in its
FIR measurements cannot be excluded.

A.3. T25

T25 was identified as an M3 star by Luhman et al. (2008) and
was found to be a transitional disk by Kim et al. (2009). The
lack of IR excess at wavelengths <8 µm indicates that the inner
regions of the disk are well depleted of small dust particles. The

modeling by Kim et al. (2009) yields an inner radius of 8 AU for
the disk. It is the only detected transitional object, together with
T35, lacking the silicates feature at 10 µm, another indication of
an efficient depletion of small particles in the inner disk region.
T25 has no known stellar companions (Nguyen et al. 2012).

A.4. T35

Gauvin & Strom (1992) classified this source as an M0 star,
and it was later identified as a possible a pretransitional disk
by Kim et al. (2009) because it displays weak excess at short
IR wavelengths. In this case, the inner disk radius is located at
15 AU (Espaillat et al. 2011). As in T25, there is no sign of sili-
cate emission. The excess at 70 µm is lower than in other cases,
but does not resemble the typical Class II SED. It has no con-
firmed known stellar or substellar companions (Nguyen et al.
2012). However, recent sparse aperture masking observations of
this source by Cieza et al. (2013) showed and asymmetry in its
K-band flux. On the basis of modeling, these authors found the
inner disk radius to be ∼8.3 AU. They were also unable to distin-
guish between the close-companion scenario and the asymmetry
being produced by the starlight scattered off the disk itself.

A.5. T56

This source was found to be an M0.5 start in Gauvin & Strom
(1992). Kim et al. (2009) identified it as a transitional disk with
a inner disk radius of 18 AU. As in the other transitional disks in
this study, its excess is higher than the expected Class II flux at
the PACS bands. It has no known bound companions (Nguyen
et al. 2012).

A.6. ISO-ChaI 52

ISO-ChaI 52 is an M4 star (Luhman 2004). Espaillat et al. (2011)
proposed it as a transitional disk, finding the source to be an ex-
treme case among their sample: based on variations of its Spitzer
spectrum, models require the inner wall height to increase by
about 400% (from 0.0006 to 0.003 AU). We also found it to be
an outlier in the sense that it has the flattest SED between 12
and 70 µm. No bound companions are known for ISO-ChaI 52
(Nguyen et al. 2012).

A.7. CR Cha

CR Cha is an M0.5 star (Gauvin & Strom 1992). Furlan et al.
(2009) found it to be an outlier in their sample when compar-
ing the equivalent width of the silicates emission and the spec-
tral slope between 13 and 31 µm: it was beyond the parameter
space considered in their study. The explanation given in Furlan
et al. (2009) is that this source could be a pretransitional disk.
For this reason, Espaillat et al. (2011) included it in their sam-
ple of transitional disks. In this study, we found this object to
be compatible with a Class II object. It is also located among
other Class II objects using the proposed classification method
(Fig.2). Therefore, although we cannot completely rule out the
possibility that this object is in a pretransitional disk phase given
its strong silicates emission, it would be in a very early stage of
the transitional phase.
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A.8. WW Cha

This source was first classified as a K5 object by Gauvin &
Strom (1992). It was included in the analysis of Espaillat et al.
(2011) for the same reason as CR Cha, and modeled as a pretran-
sitional disk. Comparison with the median SED of the Class II
sources shows that WW Cha is well above the median. The
SED of WW Cha resembles a typical Class II object, probably
still embedded in the core, as suggested by its high extinction
(Av ∼ 4.8 mag) and its position in the Herschel maps. The dusty
environment in which it is located could significantly pollute the
photometry and, hence, our conclusions about this object.

A.9. T54

T54 is known to be a misclassified transitional disk (Matrà et al.
2012), and therefore we excluded it from our analysis. The
Herschel images show contamination from close-by extended
emission, which affected our photometry and, hence, our con-
clusions. The non-transitional nature of this object is also sup-
ported by the fact that it would be the only transitional disk in
our sample with no excess emission at 70 µm with respect to the
median SED Class II disks.
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