491 research outputs found

    The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’

    Get PDF
    One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models

    “Hummingbird” floral traits interact synergistically to discourage visitation by bumble bee foragers

    Get PDF
    Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a “primary” type of animal pollinator. However, syndrome traits may also function to deter “secondary” flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such costs through synergistic color-orientation and color-reward trait interactions. Floral syndromes therefore represent complex adaptations to multiple pollinator groups, rather than simply the primary pollinator

    Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees

    Get PDF
    Background - Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results - Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years ¿ Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion - Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of endemicity. These results provide an explanation for present day distribution patterns and origins of endemicity for African rain forest trees. Moreover, given the pre-Pleistocene origins of all the studied endemic East African genera and species, these results also offer important insights for setting conservation priorities in these highly diversified but threatene

    Exploring the views of infection consultants in England on a novel delinked funding model for antimicrobials: the SMASH study

    Get PDF
    OBJECTIVES: A novel ‘subscription-type’ funding model was launched in England in July 2022 for ceftazidime/avibactam and cefiderocol. We explored the views of infection consultants on important aspects of the delinked antimicrobial funding model. METHODS: An online survey was sent to all infection consultants in NHS acute hospitals in England. RESULTS: The response rate was 31.2% (235/753). Most consultants agreed the model is a welcome development (69.8%, 164/235), will improve treatment of drug-resistant infections (68.5%, 161/235) and will stimulate research and development of new antimicrobials (57.9%, 136/235). Consultants disagreed that the model would lead to reduced carbapenem use and reported increased use of cefiderocol post-implementation. The presence of an antimicrobial pharmacy team, requirement for preauthorization by infection specialists, antimicrobial stewardship ward rounds and education of infection specialists were considered the most effective antimicrobial stewardship interventions. Under the new model, 42.1% (99/235) of consultants would use these antimicrobials empirically, if risk factors for antimicrobial resistance were present (previous infection, colonization, treatment failure with carbapenems, ward outbreak, recent admission to a high-prevalence setting). Significantly higher insurance and diversity values were given to model antimicrobials compared with established treatments for carbapenem-resistant infections, while meropenem recorded the highest enablement value. Use of both ‘subscription-type’ model drugs for a wide range of infection sites was reported. Respondents prioritized ceftazidime/avibactam for infections by bacteria producing OXA-48 and KPC and cefiderocol for those producing MBLs and infections with Stenotrophomonas maltophilia, Acinetobacter spp. and Burkholderia cepacia. CONCLUSIONS: The ‘subscription-type’ model was viewed favourably by infection consultants in England

    Exploring the views of infection consultants in England on a novel delinked funding model for antimicrobials: the SMASH study

    Get PDF
    OBJECTIVES: A novel 'subscription-type' funding model was launched in England in July 2022 for ceftazidime/avibactam and cefiderocol. We explored the views of infection consultants on important aspects of the delinked antimicrobial funding model. METHODS: An online survey was sent to all infection consultants in NHS acute hospitals in England. RESULTS: The response rate was 31.2% (235/753). Most consultants agreed the model is a welcome development (69.8%, 164/235), will improve treatment of drug-resistant infections (68.5%, 161/235) and will stimulate research and development of new antimicrobials (57.9%, 136/235). Consultants disagreed that the model would lead to reduced carbapenem use and reported increased use of cefiderocol post-implementation. The presence of an antimicrobial pharmacy team, requirement for preauthorization by infection specialists, antimicrobial stewardship ward rounds and education of infection specialists were considered the most effective antimicrobial stewardship interventions. Under the new model, 42.1% (99/235) of consultants would use these antimicrobials empirically, if risk factors for antimicrobial resistance were present (previous infection, colonization, treatment failure with carbapenems, ward outbreak, recent admission to a high-prevalence setting).Significantly higher insurance and diversity values were given to model antimicrobials compared with established treatments for carbapenem-resistant infections, while meropenem recorded the highest enablement value. Use of both 'subscription-type' model drugs for a wide range of infection sites was reported. Respondents prioritized ceftazidime/avibactam for infections by bacteria producing OXA-48 and KPC and cefiderocol for those producing MBLs and infections with Stenotrophomonas maltophilia, Acinetobacter spp. and Burkholderia cepacia. CONCLUSIONS: The 'subscription-type' model was viewed favourably by infection consultants in England

    Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts

    Get PDF
    Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and similar to 30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.Assembling the Tree of Life programme at NSF; NSF [EF-0531730-002, EF-0531680, EF-0531750]; Scottish Government's Rural and Environment Science and Analytical Services Division; BeiPD-cofund Marie Curie fellowshipinfo:eu-repo/semantics/publishedVersio

    Ants Sow the Seeds of Global Diversification in Flowering Plants

    Get PDF
    Background: The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances. Methodology/Principal Findings: Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions. Conclusions/Significance: Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on largescale diversification

    The Benefits of Mutualism: A Conceptual Framework

    Full text link
    There are three general mechanisms by which phenotypic benefits are transferred between unrelated organisms. First, one organism may purloin benefits from another by preying on or parasitizing the other organism. Second, one organism may enjoy benefits that are incidental to or a by-product of the self-serving traits of another organism. Third, an organism may invest in another organism if that investment produces return benefits which outweigh the cost of the investment. Interactions in which both parties gain a net benefit are mutualistic. The three mechanisms by which benefits are transferred between organisms can be combined in pairs to produce six possible kinds of original or ‘basal’ mutualisms that can arise from an amutualistic state. A review of the literature suggests that most or all interspecific mutualism have origins in three of the six possible kinds of basal mutualism. Each of these three basal mutualisms have byproduct benefits flowing in at least one direction. The transfer of by-product benefits and investment are common to both intra- and interspecific mutualisms, so that some interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to the point where each party invests in the other, sometimes obscuring the nature of the original interaction along the way. Two prominent models for the evolution of mutualism do not include by-product benefits: Roughgarden's model for the evolution of the damsel-fish anemone mutualism and the ‘Tit-for-Tat’ model of reciprocity. Using the conceptual framework presented here, including in particular by-product benefits, I have shown how it is possible to construct more parsimonious alternatives to both models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72439/1/j.1469-185X.1995.tb01196.x.pd

    The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea(1) on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet(2). Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes(3), genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae(4) and that is important for ion homoeostasis, nutrient uptake and O-2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming(5,6), to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants(7)
    corecore