170 research outputs found

    Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice

    Get PDF
    Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis

    Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Five DNA regions, namely, <it>rbcL</it>, <it>matK</it>, ITS, ITS2, and <it>psbA-trnH</it>, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported.</p> <p>Results</p> <p>The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera.</p> <p>Conclusions</p> <p>ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.</p

    Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering

    Get PDF
    Abstract Monodominant patches of forest dominated by Gilbertiodendron dewevrei are commonly found in central African tropical forests, alongside forests with high species diversity. Although these forests are generally found sparsely distributed along rivers, their occurrence is not thought to be (clearly) driven by edaphic conditions but rather by trait combinations of G. dewevrei that aid in achieving monodominance. Functional community structure between these monodominant and mixed forests has, however, not yet been compared. Additionally, little is known about nondominant species in the monodominant forest community. These two topics are addressed in this study. We investigate the functional community structure of 10 one‐hectare plots of monodominant and mixed forests in a central region of the Congo basin, in DR Congo. Thirteen leaf and wood traits are measured, covering 95% (basal area weighted) of all species present in the plots, including leaf nutrient contents, leaf isotopic compositions, specific leaf area, wood density, and vessel anatomy. The trait‐based assessment of G. dewevrei shows an ensemble of traits related to water use and transport that could be favorable for its location near forest rivers. Moreover, indications have been found for N and P limitations in the monodominant forest, possibly related to ectomycorrhizal associations formed with G. dewevrei. Reduced leaf N and P contents are found at the community level for the monodominant forest and for different nondominant groups, as compared to those in the mixed forest. In summary, this work shows that environmental filtering does prevail in the monodominant G. dewevrei forest, leading to lower functional diversity in this forest type, with the dominant species showing beneficial traits related to its common riverine locations and with reduced soil N and P availability found in this environment, both coregulating the tree community assembly

    Ethnobotany genomics - discovery and innovation in a new era of exploratory research

    Get PDF
    We present here the first use of DNA barcoding in a new approach to ethnobotany we coined "ethnobotany genomics". This new approach is founded on the concept of 'assemblage' of biodiversity knowledge, which includes a coming together of different ways of knowing and valorizing species variation in a novel approach seeking to add value to both traditional knowledge (TK) and scientific knowledge (SK). We employed contemporary genomic technology, DNA barcoding, as an important tool for identifying cryptic species, which were already recognized ethnotaxa using the TK classification systems of local cultures in the Velliangiri Hills of India. This research is based on several case studies in our lab, which define an approach to that is poised to evolve quickly with the advent of new ideas and technology. Our results show that DNA barcoding validated several new cryptic plant species to science that were previously recognized by TK classifications of the Irulas and Malasars, and were lumped using SK classification. The contribution of the local aboriginal knowledge concerning plant diversity and utility in India is considerable; our study presents new ethnomedicine to science. Ethnobotany genomics can also be used to determine the distribution of rare species and their ecological requirements, including traditional ecological knowledge so that conservation strategies can be implemented. This is aligned with the Convention on Biological Diversity that was signed by over 150 nations, and thus the world's complex array of human-natural-technological relationships has effectively been re-organized

    Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists

    Get PDF
    Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes

    Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (<it>CO1</it>) to diagnose and delimit species. However, there is no compelling <it>a priori </it>reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal <it>CO1 </it>barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation.</p> <p>Results</p> <p>Based on 1,179 mitochondrial genomes of eutherians, we found that the universal <it>CO1 </it>barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels.</p> <p>Conclusions</p> <p>We suggest that the <it>CO1 </it>barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.</p
    corecore