66 research outputs found

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications.The HALO deployment during EMeRGe was funded by a consortium comprising the German Research Foundation (DFG) Priority Program HALO-SPP 1294, the Institute of Atmospheric Physics of DLR, the Max Planck Society (MPG), and the Helmholtz Association. Flora Kluge, Benjamin Schreiner, and Klaus Pfeilsticker acknowledge the support given by the DFG through the project nos. PF 384-16, PF 384-17, and PG 385-19. Ralf Koppmann and Marc Krebsbach acknowledge DFG funding through project no. KR3861_1-1. Katja Bigge acknowledges additional funding from the Heidelberg Graduate School for Physics. Johannes Schneider, Katharina Kaiser, and Stephan Borrmann acknowledge funding through the DFG (project no. 316589531). Lisa Eirenschmalz and Hans Schlager acknowledge support by DFG through project MEPOLL (SCHL1857/4-1). Anna B. Kalisz Hedegaard would like to thank DAAD and DLR for a Research Fellowship. Hans Schlager acknowledge financial support by the DLR TraK (Transport and Climate) project. Michael Sicard acknowledges support from the EU (GA nos. 654109, 778349, 871115, and 101008004) and the Spanish Government (ref. nos. CGL2017-90884-REDT, PID2019-103886RB-I00, RTI2018-096548-B-I00, and MDM-2016-0600). Midhun George, Yangzhuoran Liu, M. Dolores Andrés Hernández, and John Phillip Burrows acknowledge financial support from the University of Bremen. FLEXPART simulations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG within the scope of the Excellence Initiative. Anne-Marlene Blechschmidt was partly funded through the CAMS-84 project. Jennifer Wolf acknowledges support from the German Federal Ministry for Economic Affairs and Energy – BMWi (project Digitally optimized Engineering for Services – DoEfS; contract no. 20X1701B). Theresa Harlass thanks DLR VOR for funding the young investigator research group “Greenhouse Gases”. Mariano Mertens, Patrick Jöckel, and Markus Kilian acknowledge resources of the Deutsches Klimarechenzentrum (DKRZ) granted by the WLA project ID bd0617 for the MECO(n) simulations and the financial support from the DLR projects TraK (Transport und Klima) and the Initiative and Networking Fund of the Helmholtz Association through the project “Advanced Earth System Modelling Capacity” (ESM). Bruna A. Holanda acknowledges the funding from Brazilian CNPq (process 200723/2015-4).Peer ReviewedArticle signat per 53 autors/es: M. Dolores Andrés Hernández (1), Andreas Hilboll (2), Helmut Ziereis (3), Eric Förster (4), Ovid O. Krüger (5), Katharina Kaiser (6,7), Johannes Schneider (7), Francesca Barnaba (8), Mihalis Vrekoussis (2,18), Jörg Schmidt (9), Heidi Huntrieser (3), Anne-Marlene Blechschmidt (1), Midhun George (1), Vladyslav Nenakhov (1,a), Theresa Harlass (3), Bruna A. Holanda (5), Jennifer Wolf (3), Lisa Eirenschmalz (3), Marc Krebsbach (10), Mira L. Pöhlker (5,b), Anna B. Kalisz Hedegaard (3,2), Linlu Mei (1), Klaus Pfeilsticker (11), Yangzhuoran Liu (1), Ralf Koppmann (10), Hans Schlager (3), Birger Bohn (12), Ulrich Schumann (3), Andreas Richter (1), Benjamin Schreiner (11), Daniel Sauer (3), Robert Baumann (3), Mariano Mertens (3), Patrick Jöckel (3), Markus Kilian (3), Greta Stratmann (3,c,) Christopher Pöhlker (5), Monica Campanelli (8), Marco Pandolfi (13), Michael Sicard (14,15), José L. Gómez-Amo (16), Manuel Pujadas (17), Katja Bigge (11), Flora Kluge (11), Anja Schwarz (9), Nikos Daskalakis (2), David Walter (5), Andreas Zahn (4), Ulrich Pöschl (5), Harald Bönisch (4), Stephan Borrmann (6,7), Ulrich Platt (11), and John P. Burrows (1) // (1) Institute of Environmental Physics, University of Bremen, Bremen, Germany; (2) Laboratory for Modeling and Observation of the Earth System, Institute of Environmental Physics, Bremen, Germany; (3) Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; (4) Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany; (5) Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; (6) Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany, (7) Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; (8) National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy; (9) Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany; (10) Institute for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal, Germany; (11) Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany, (12) Institute of Energy and Climate Research IEK-8, Forschungszentrum Jülich, Jülich, Germany; (13) Consejo Superior de Investigaciones Científicas, Institute of Environmental Assessment and Water Research, Barcelona, Spain; (14) CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain; (15) Ciències i Tecnologies de l’Espai-Centre de Recerca de l’Aeronàutica i de l’Espai/Institut d’Estudis Espacials de Catalunya), Universitat Politècnica de Catalunya, Barcelona, Spain; (16) Department of Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain; (17) Atmospheric Pollution Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), Madrid, Spain; (18) Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus anow at: Flight Experiments, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, GermanyPostprint (published version

    Early rise in central venous pressure during a spontaneous breathing trial: A promising test to identify patients at high risk of weaning failure?

    Get PDF
    Background The spontaneous breathing trial (SBT) assesses the risk of weaning failure by evaluating some physiological responses to the massive venous return increase imposed by discontinuing positive pressure ventilation. This trial can be very demanding for some critically ill patients, inducing excessive physical and cardiovascular stress, including muscle fatigue, heart ischemia and eventually cardiac dysfunction. Extubation failure with emergency reintubation is a serious adverse consequence of a failed weaning process. Some data suggest that as many as 50% of patients that fail weaning do so because of cardiac dysfunction. Unfortunately, monitoring cardiovascular function at the time of the SBT is complex. The aim of our study was to explore if central venous pressure (CVP) changes were related to weaning failure after starting an SBT. We hypothesized that an early rise on CVP could signal a cardiac failure when handling a massive increase on venous return following a discontinuation of positive pressure ventilation. This CVP rise could identify a subset of patients at high risk for extubation failure. Methods Two-hundred and four mechanically ventilated patients in whom an SBT wa

    CA 15-3 prognostic biomarker in SARS-CoV-2 pneumonia.

    Get PDF
    The severity of lung involvement is the main prognostic factor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Carbohydrate antigen 15-3 (CA 15-3), a marker of lung damage and fibrosis, could help predict the prognosis of SARS-CoV-2 pneumonia. This was a retrospective and observational study. CA 15-3 was analyzed in the blood samples of patients consecutively admitted for SARS-CoV-2 pneumonia and whose blood samples were available in the biobank. Other prognostic markers were also measured (interleukin 6 [IL6], C-reactive protein [CRP], D-dimer, troponin T, and NT-ProBNP). The occurrence of in-hospital complications was registered, including death, the need for medical intensive care, and oxygen therapy at discharge. In this study, 539 patients were recruited (54.9% men, mean age: 59.6 ± 16.4 years). At admission, the mean concentrations of CA 15-3 was 20.5 ± 15.8 U/mL, and the concentration was correlated with male sex, older age, and other severity markers of coronavirus disease of 2019 (COVID-19) (IL6, CRP, D-dimer, troponine T, and NT-ProBNP). CA 15-3 levels were higher in patients who died (n = 56, 10.4%) (35.33 ± 30.45 vs. 18.8 ± 12.11, p < 0.001), who required intensive medical support (n = 78, 14.4%; 31.17 ± 27.83 vs. 18.68 ± 11.83; p < 0.001), and who were discharged with supplemental oxygen (n = 64, 13.3%; 22.65 ± 14.41 vs. 18.2 ± 11.7; p = 0.011). Elevated CA 15-3 levels (above 34.5 U/mL) were a strong predictor of a complicated in-hospital course, in terms of a higher risk of death (adjusted odds ratio [OR] 3.74, 95% confidence interval [CI]: 1.22-11.9, p = 0.022) and need for intensive care (adjusted OR 4.56, 95% CI: 1.37-15.8) after adjusting for all other risk factors. The degree of lung damage and fibrosis evaluated in terms of CA 15-3 concentrations may allow early identification of the increased risk of complications in patients with SARS-CoV-2 pneumonia.S

    Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017

    Get PDF
    Megacities and other major population centres (MPCs) worldwide are major sources of air pollution, both locally as well as downwind. The overall assessment and prediction of the impact of MPC pollution on tropospheric chemistry are challenging. The present work provides an overview of the highlights of a major new contribution to the understanding of this issue based on the data and analysis of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) international project. EMeRGe focuses on atmospheric chemistry, dynamics, and transport of local and regional pollution originating in MPCs. Airborne measurements, taking advantage of the long range capabilities of the High Altitude and LOng Range Research Aircraft (HALO, https://www.halo-spp.de, last access: 22 March 2022), are a central part of the project. The synergistic use and consistent interpretation of observational data sets of different spatial and temporal resolution (e.g. from ground-based networks, airborne campaigns, and satellite measurements) supported by modelling within EMeRGe provide unique insight to test the current understanding of MPC pollution outflows. In order to obtain an adequate set of measurements at different spatial scales, two field experiments were positioned in time and space to contrast situations when the photochemical transformation of plumes emerging from MPCs is large. These experiments were conducted in summer 2017 over Europe and in the inter-monsoon period over Asia in spring 2018. The intensive observational periods (IOPs) involved HALO airborne measurements of ozone and its precursors, volatile organic compounds, aerosol particles, and related species as well as coordinated ground-based ancillary observations at different sites. Perfluorocarbon (PFC) tracer releases and model forecasts supported the flight planning, the identification of pollution plumes, and the analysis of chemical transformations during transport. This paper describes the experimental deployment and scientific questions of the IOP in Europe. The MPC targets – London (United Kingdom; UK), the Benelux/Ruhr area (Belgium, the Netherlands, Luxembourg and Germany), Paris (France), Rome and the Po Valley (Italy), and Madrid and Barcelona (Spain) – were investigated during seven HALO research flights with an aircraft base in Germany for a total of 53 flight hours. An in-flight comparison of HALO with the collaborating UK-airborne platform Facility for Airborne Atmospheric Measurements (FAAM) took place to assure accuracy and comparability of the instrumentation on board. Overall, EMeRGe unites measurements of near- and far-field emissions and hence deals with complex air masses of local and distant sources. Regional transport of several European MPC outflows was successfully identified and measured. Chemical processing of the MPC emissions was inferred from airborne observations of primary and secondary pollutants and the ratios between species having different chemical lifetimes. Photochemical processing of aerosol and secondary formation or organic acids was evident during the transport of MPC plumes. Urban plumes mix efficiently with natural sources as mineral dust and with biomass burning emissions from vegetation and forest fires. This confirms the importance of wildland fire emissions in Europe and indicates an important but discontinuous contribution to the European emission budget that might be of relevance in the design of efficient mitigation strategies. The present work provides an overview of the most salient results in the European context, with these being addressed in more detail within additional dedicated EMeRGe studies. The deployment and results obtained in Asia will be the subject of separate publications

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Outpatient Parenteral Antibiotic Treatment vs Hospitalization for Infective Endocarditis: Validation of the OPAT-GAMES Criteria

    Get PDF
    corecore