410 research outputs found

    Fabrication and characterization of graphene/AlGaN/GaN ultraviolet Schottky photodetector

    Get PDF
    We report on the fabrication and characterization of a Schottky ultraviolet graphene/AlGaN/GaN photodetector (PD). The fabricated device clearly exhibits rectification behaviour, indicating that the Schottky barrier is formed between the AlGaN and the mechanically transferred graphene. The Schottky parameters are evaluated using an equivalent circuit with two diodes connected back-to-back in series. The PD shows a low dark current of 4.77 × 10-12 A at a bias voltage of -2.5 V. The room temperature current-voltage (I-V) measurements of the graphene/AlGaN/GaN Schottky PD exhibit a large photo-to-dark contrast ratio of more than four orders of magnitude. Furthermore, the device shows peak responsivity at a wavelength of 350 nm, corresponding to GaN band edge and a small hump at 300 nm associated to the AlGaN band edge. In addition, we examine the behaviour of Schottky PDs with responsivities of 0.56 and 0.079 A W-1 at 300 and 350 nm, respectively, at room temperature. © 2016 IOP Publishing Ltd

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.

    Evidence for muon neutrino oscillation in an accelerator-based experiment

    Get PDF
    We present results for muon neutrino oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced muon neutrino beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy dependent disappearance of muon neutrino, which we presume have oscillated to tau neutrino. The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).Comment: 5 pages, 4 figure

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore