1,287 research outputs found

    Graduate outcomes and a spatial approach to Decent Work

    Get PDF
    By Professor Tony Wall (Liverpool John Moores University), Dr Ann Hindley (University of Chester), Dr Scott Foster (Liverpool John Moores University), Dr (Hanoi University, Vietnam), Dr Ho (Phu Xuan University, Vietnam), and Dr Nga Ngo (Tay Bac University Vietnam)

    The spatialization of decent Work and the role of employability empowerment for minority ethnic young people in emerging economies

    Get PDF
    Global rises in precarious labour conditions have prompted further empirical work in Decent Work, a special category of employment characterised by equitable pay, treatment, and healthy working conditions. Despite this, research has tended to be conducted in developed countries with privileged groups such as those with typical working arrangements and rely on psychologically framed individual characteristics to explain marginalising factors. We propose a more sociologically framed, spatialised perspective on Decent Work which posits that marginalising factors are spatially variable and determined but moderated by employability empowerment. We measure our propositions across three spatially different sites of Vietnam through (1) a survey of minority ethnic students and graduates (N=1071) and (2) a survey of stakeholders involved in the recruitment and employment of this group (N=204). We find support for most of our propositions and call for more spatialised empirical work in the field of Decent Work

    Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity

    Get PDF
    The intermediate- to high-mass star-forming region IRAS 20343+4129 is an excellent laboratory to study the influence of high- and intermediate-mass young stellar objects on nearby starless dense cores, and investigate for possible implications in the clustered star formation process. We present 3 mm observations of continuum and rotational transitions of several molecular species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations carried out with the Very Large Array, to reveal the properties of the dense gas. We confirm undoubtedly previous claims of an expanding cavity created by an ultracompact HII region associated with a young B2 zero-age main sequence (ZAMS) star. The dense gas surrounding the cavity is distributed in a filament that seems squeezed in between the cavity and a collimated outflow associated with an intermediate-mass protostar. We have identified 5 millimeter continuum condensations in the filament. All of them show column densities consistent with potentially being the birthplace of intermediate- to high-mass objects. These cores appear different from those observed in low-mass clustered environments in sereval observational aspects (kinematics, temperature, chemical gradients), indicating a strong influence of the most massive and evolved members of the protocluster. We suggest a possible scenario in which the B2 ZAMS star driving the cavity has compressed the surrounding gas, perturbed its properties and induced the star formation in its immediate surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Complete Sequencing of pNDM-HK Encoding NDM-1 Carbapenemase from a Multidrug-Resistant Escherichia coli Strain Isolated in Hong Kong

    Get PDF
    BACKGROUND: The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all β-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited. METHODOLOGY: We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-β-lactamase gene was sequenced. PRINCIPAL FINDINGS: The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwina amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to β-lactams (bla(TEM-1), bla(NDM-1), Δbla(DHA-1)), aminoglycosides (aacC2, armA), sulphonamides (sul1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcp2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively. SIGNIFICANCE: The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph

    Tracing the evolutionary stage of Bok globules: CCS and NH3

    Full text link
    We pursue the investigation of a previously proposed correlation between chemical properties and physical evolutionary stage of isolated low-mass star-forming regions. In the past, the NH3/CCS abundance ratio was suggested to be a potentially useful indicator for the evolutionary stage of cloud cores. We aim to study its applicability for isolated Bok globules. A sample of 42 Bok globules with and without signs of current star formation was searched for CCS(2-1) emission, the observations were complemented with NH3 measurements available in the literature and own observations. The abundance ratio of both molecules is discussed with respect to the evolutionary stage of the objects and in the context of chemical models. The NH3/CCS ratio could be assessed for 18 Bok globules and is found to be moderately high and roughly similar across all evolutionary stages from starless and prestellar cores towards internally heated cores harbouring protostars of Class 0, Class I or later. Bok globules with extremely high CCS abundance analogous to carbon-chain producing regions in dark cloud cores are not found. The observed range of NH3/CCS hints towards a relatively evolved chemical state of all observed Bok globules.Comment: 12 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis

    Get PDF
    Osteoarthritis (OA), affecting joints and bone, causes physical gait disability with huge socio-economic burden; treatment remains palliative. Roles for antioxidants in protecting against such chronic disorders have been examined previously. Sulforaphane is a naturally occurring antioxidant. Herein, we explore whether SFX-01®, a stable synthetic form of sulforaphane, modifies gait, bone architecture and slows/reverses articular cartilage destruction in a spontaneous OA model in STR/Ort mice. Sixteen mice (n = 8/group) were orally treated for 3 months with either 100 mg/kg SFX-01® or vehicle. Gait was recorded, tibiae were microCT scanned and analysed. OA lesion severity was graded histologically. The effect of SFX-01® on bone turnover markers in vivo was complemented by in vitro bone formation and resorption assays. Analysis revealed development of OA-related gait asymmetry in vehicle-treated STR/Ort mice, which did not emerge in SFX-01®-treated mice. We found significant improvements in trabecular and cortical bone. Despite these marked improvements, we found that histologically-graded OA severity in articular cartilage was unmodified in treated mice. These changes are also reflected in anabolic and anti-catabolic actions of SFX-01® treatment as reflected by alteration in serum markers as well as changes in primary osteoblast and osteoclast-like cells in vitro. We report that SFX-01® improves bone microarchitecture in vivo, produces corresponding changes in bone cell behaviour in vitro and leads to greater symmetry in gait, without marked effects on cartilage lesion severity in STR/Ort osteoarthritic mice. Our findings support both osteotrophic roles and novel beneficial gait effects for SFX-01® in this model of spontaneous OA

    Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis

    Get PDF
    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGESeq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFNprimed iDCs

    Multimorbidity, polypharmacy, and COVID-19 infection within the UK Biobank cohort

    Get PDF
    Background: It is now well recognised that the risk of severe COVID-19 increases with some long-term conditions (LTCs). However, prior research primarily focuses on individual LTCs and there is a lack of data on the influence of multimorbidity (≥2 LTCs) on the risk of COVID-19. Given the high prevalence of multimorbidity, more detailed understanding of the associations with multimorbidity and COVID-19 would improve risk stratification and help protect those most vulnerable to severe COVID-19. Here we examine the relationships between multimorbidity, polypharmacy (a proxy of multimorbidity), and COVID-19; and how these differ by sociodemographic, lifestyle, and physiological prognostic factors. Methods and findings: We studied data from UK Biobank (428,199 participants; aged 37–73; recruited 2006–2010) on self-reported LTCs, medications, sociodemographic, lifestyle, and physiological measures which were linked to COVID-19 test data. Poisson regression models examined risk of COVID-19 by multimorbidity/polypharmacy and effect modification by COVID-19 prognostic factors (age/sex/ethnicity/socioeconomic status/smoking/physical activity/BMI/systolic blood pressure/renal function). 4,498 (1.05%) participants were tested; 1,324 (0.31%) tested positive for COVID-19. Compared with no LTCs, relative risk (RR) of COVID-19 in those with 1 LTC was no higher (RR 1.12 (CI 0.96–1.30)), whereas those with ≥2 LTCs had 48% higher risk; RR 1.48 (1.28–1.71). Compared with no cardiometabolic LTCs, having 1 and ≥2 cardiometabolic LTCs had a higher risk of COVID-19; RR 1.28 (1.12–1.46) and 1.77 (1.46–2.15), respectively. Polypharmacy was associated with a dose response higher risk of COVID-19. All prognostic factors were associated with a higher risk of COVID-19 infection in multimorbidity; being non-white, most socioeconomically deprived, BMI ≥40 kg/m2, and reduced renal function were associated with the highest risk of COVID-19 infection: RR 2.81 (2.09–3.78); 2.79 (2.00–3.90); 2.66 (1.88–3.76); 2.13 (1.46–3.12), respectively. No multiplicative interaction between multimorbidity and prognostic factors was identified. Important limitations include the low proportion of UK Biobank participants with COVID-19 test data (1.05%) and UK Biobank participants being more affluent, healthier and less ethnically diverse than the general population. Conclusions: Increasing multimorbidity, especially cardiometabolic multimorbidity, and polypharmacy are associated with a higher risk of developing COVID-19. Those with multimorbidity and additional factors, such as non-white ethnicity, are at heightened risk of COVID-19

    Variations in the Galactic star formation rate and density thresholds for star formation

    Get PDF
    The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star-formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxy's disk as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star-formation prescriptions can be tested. Here we show that by several measures, the current star formation rate in the CMZ is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 deg < l < 3.5 deg, |b| < 0.5 deg contains ~10^7 Msun of dense molecular gas -- enough to form 1000 Orion-like clusters -- but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds, such as the amplitude of turbulent motions, must be included in the star-formation prescription to predict the star formation rate in a given mass of molecular gas.Comment: 17 pages, 6 figures, submitted MNRA
    corecore