115 research outputs found

    Privileged Scaffold Decoration for the Identification of the First Trisubstituted Triazine with Anti-SARS-CoV-2 Activity

    Get PDF
    : Current therapy against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are based on the use of Remdesivir 1, Molnupiravir 2, and the recently identified Nirmatrelvir 3. Unfortunately, these three drugs showed some limitations regarding potency and possible drug-drug interactions. A series of derivatives coming from a decoration approach of the privileged scaffold s-triazines were synthesized and evaluated against SAR-CoV-2. One derivative emerged as the hit of the series for its micromolar antiviral activity and low cytotoxicity. Mode of action and pharmacokinetic in vitro preliminary studies further confirm the role as candidates for a future optimization campaign of the most active derivative identified with this work. © 2022 by the authors

    Novel Pyridine-Based Hydroxamates and 2'-Aminoanilides as Histone Deacetylase Inhibitors: Biochemical Profile and Anticancer Activity

    Get PDF
    Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide 5b previously described by us as HDAC inhibitor, we prepared four aza-analogues of 5b (6-8, 9b) as regioisomers containing the pyridine nucleus. A preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide 9b as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9a, 9c-f, and 11a-f) and 2'-aminoanilides (10a-f and 12a-f), related to 9b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11d displayed subnanomolar potency (IC50: 0.5 nM) and selectivity up to 34000-fold over HDAC4 and from 100- to 1300-fold over all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12d being the most effective (IC50HDAC3 = 0.113 μM). When tested in U937 leukemia cells, the hydroxamates 9e, 11c, and 11d blocked over 80% cells in G2/M phase, whereas the anilides did not alter the cell cycle progress. In the same cell line, the hydroxamate 11c and the anilide 10b induced about 30% apoptosis, and the anilide 12c displayed about 40% cytodifferentiation. Finally, the most potent compounds in leukemia cells 9b, 11c, 10b, 10e, and 12c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level

    3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin

    Get PDF
    We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative 10 inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation. Compound 10 minimally affected the proliferation of normal blood cells, indicating that it may be a promising agent to overcome broad tyrosine kinase inhibitor resistance in relapsed/refractory CML patients. Compound 10 significantly decreased CML proliferation by inducing G2/M phase arrest and apoptosis via a mitochondria-dependent pathway. ARDAP 10 augmented the cytotoxic effects of IM in human CML cells. Compound 10 represents a robust lead compound to develop tubulin inhibitors with potential as novel treatments for CML

    The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders

    Get PDF
    Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognised in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition – glutamate and acetylcholine. Since this pathway – the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress it also stands in an unique position to mediate the effects of environmental factors on cognition and behaviour. Targetting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures

    New Indole Tubulin Assembly Inhibitors Cause Stable Arrest of Mitotic Progression, Enhanced Stimulation of Natural Killer Cell Cytotoxic Activity, and Repression of Hedgehog-Dependent Cancer

    Get PDF
    We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer

    Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors

    Get PDF
    New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed ICâ‚…â‚€ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes

    Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors

    Get PDF
    New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed ICâ‚…â‚€ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes

    Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid–induced differentiation

    Get PDF
    The histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors. In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells, triggering degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knockout, but targeting LSD1 sensitizes them to physiological doses of RA without altering of PML-RAR levels, and extends survival of leukemic mice upon RA treatment. The combination of RA with LSD1 inhibition (or knockout) is also effective in other non-APL, acute myeloid leukemia (AML) cells. Nonenzymatic activities of LSD1 are essential to block differentiation, while RA with targeting of LSD1 releases a differentiation gene expression program, not strictly dependent on changes in histone H3K4 methylation. Integration of proteomic/epigenomic/mutational studies showed that LSD1 inhibitors alter the recruitment of LSD1-containing complexes to chromatin, inhibiting the interaction between LSD1 and the transcription factor GFI1
    • …
    corecore