78 research outputs found

    Different stress-related phenotypes of BALB/c mice from in-house or vendor: alterations of the sympathetic and HPA axis responsiveness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory routine procedures such as handling, injection, gavage or transportation are stressful events which may influence physiological parameters of laboratory animals and may interfere with the interpretation of the experimental results. Here, we investigated if female BALB/c mice derived from in-house breeding and BALB/c mice from a vendor which were shipped during their juvenile life differ in their HPA axis activity and stress responsiveness in adulthood.</p> <p>Results</p> <p>We show that already transferring the home cage to another room is a stressful event which causes an increased HPA axis activation for at least 24 hours as well as a loss of circulating lymphocytes which normalizes during a few days after transportation. However and important for the interpretation of experimental data, commercially available strain-, age- and gender-matched animals that were shipped over-night showed elevated glucocorticoid levels for up to three weeks after shipment, indicating a heightened HPA axis activation and they gained less body weight during adolescence. Four weeks after shipment, these vendor-derived mice showed increased corticosterone levels at 45-min after intraperitoneal ACTH challenge but, unexpectedly, no acute stress-induced glucocorticoid release. Surprisingly, activation of monoaminergic pathways were identified to inhibit the central nervous HPA axis activation in the vendor-derived, shipped animals since depletion of monoamines by reserpine treatment could restore the stress-induced HPA axis response during acute stress.</p> <p>Conclusions</p> <p>In-house bred and vendor-derived BALB/c mice show a different stress-induced HPA axis response in adulthood which seems to be associated with different central monoaminergic pathway activity. The stress of shipment itself and/or differences in raising conditions, therefore, can cause the development of different stress response phenotypes which needs to be taken into account when interpreting experimental data.</p

    Psychological Stress-Induced, IDO1-Dependent Tryptophan Catabolism: Implications on Immunosuppression in Mice and Humans

    Get PDF
    It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer's patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood

    The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders

    Get PDF
    Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognised in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition – glutamate and acetylcholine. Since this pathway – the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress it also stands in an unique position to mediate the effects of environmental factors on cognition and behaviour. Targetting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures

    Stress and chytridiomycosis: Exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen

    Full text link
    Recent emergence and spread of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been attributed to a number of factors, including environmental stressors that increase host susceptibility to Bd. Physiological stress can increase circulating levels of the hormone, corticosterone, which can alter a host's physiology and affect its susceptibility to pathogens. We experimentally elevated whole‐body levels of corticosterone in both larval and post‐metamorphic amphibians, and subsequently tested their susceptibility to Bd. Larvae of three species were tested ( Anaxyrus boreas , Rana cascadae , and Lithobates catesbeianus ) and one species was tested after metamorphosis ( R. cascadae ). After exposure to Bd, we measured whole‐body corticosterone, infection, mortality, growth, and development. We found that exposure to exogenous corticosterone had no effect on Bd infection in any species or at either life stage. Species varied in whole‐body corticosterone levels and exposure to corticosterone reduced mass in A. boreas and R. cascadae larvae. Exposure to Bd did not affect mortality, but had a number of sublethal effects. Across species, larvae exposed to Bd had higher corticosterone levels than unexposed larvae, but the opposite pattern was found in post‐metamorphic R. cascadae . Bd exposure also increased larval length in all species and increased mass in R. cascadae larvae. Our results indicate that caution is warranted in assuming a strong link between elevated levels of corticosterone and disease susceptibility in amphibians. The role of physiological stress in altering Bd prevalence in amphibian populations is likely much more complicated than can be explained by examining a single “stress” endpoint. J. Exp. Zool. 321A:243–253, 2014 . © 2014 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106976/1/jez1855.pd

    Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review

    Full text link

    Altered hepatic mRNA expression of immune response and apoptosis-associated genes after acute and chronic psychological stress in mice

    No full text
    Using a combination of transcriptional profiling and Ingenuity Pathway Analysis (IPA, www.ingenuity.com) we investigated acute and chronic psychological stress induced alterations of hepatic gene expression of BALB/c mice. Already after a 2-h single stress session, up-regulation of several LPS and glucocorticoid-sensitive immune response genes and markers related to oxidative stress and apoptotic processes were observed. Support for the existence of oxidative stress was gained by measuring increased protein carbonylation, but no alterations of immune responsiveness or cell death were measured in mice after acute stress compared to the control group. When animals were repeatedly stressed during 4.5-days, we found reduced transcription of antigen presentation molecules, altered mRNA levels of immune cell signaling mediators and persisting high expression of apoptosis-related genes. These alterations were associated with a measurable immune suppression characterized by a reduced ability to clear experimental Salmonella typhimurium infection from the liver and a heightened hepatocyte apoptosis. Moreover, genes associated with anti-oxidative functions and regenerative processes were induced in the hepatic tissue of chronically stressed mice. These findings indicate that modulation of the immune response and of apoptosis-related genes is initiated already during a single acute stress exposure. However, immune suppression will only manifest in repeatedly stressed mice which additionally show induction of protective and liver regenerative genes to prevent further hepatocyte damage
    corecore