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Abstract 

Understanding the neurochemical basis for cognitive function is one of the major goals of 

neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of 

psychiatric and neurological disorders. In this review, the focus will be on a biochemical 

pathway that remains under-recognised in its implications for brain function, even though it can 

be responsible for moderating the activity of two neurotransmitters fundamentally involved in 

cognition – glutamate and acetylcholine. Since this pathway – the kynurenine pathway of 

tryptophan metabolism - is induced by immunological activation and stress it also stands in an 

unique position to mediate the effects of environmental factors on cognition and behaviour. 

Targetting the pathway for new drug development could, therefore, be of value not only for the 

treatment of existing psychiatric conditions, but also for preventing the development of cognitive 

disorders in response to environmental pressures. 

********************************************************* 

 

The neurochemistry of cognition 

   The neural complexity of cognitive function makes it exceptionally difficult to identify specific 

neurochemical substrates, especially those that could provide pharmacologically relevant 

targets for the prevention or treatment of cognitive dysfunction (Millan et al., 2012). The two 

systems which have received most attention to date are those releasing glutamate or 

acetylcholine as their transmitters. Both these systems have well-established roles in various 

aspects of cognitive function, with the focus of interest being on glutamate receptors sensitive to 

the synthetic ligand N-methyl-D-aspartate (NMDA) (Newcomer & Krystal, 2001; Castellano et al., 

2001; Neill et al., 2010).  

     The biomedical relevance of these systems is borne out by the ability of agonists and 

antagonists to affect cognitive behaviour and for some of these compounds to appear as 

potential therapeutic agents. Compounds that promote activation of NMDA receptors, especially 
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those such as D-cycloserine which act via the co-agonist strychnine-insensitive Gly-B-site for 

glycine on the NMDA receptor, facilitate learning in humans (Kalisch et al., 2009; Onur et al., 

2010) whereas antagonists such as ketamine, dizocilpine [MK-801] and phencyclidine are 

detrimental to learning and cognitive function (Jentsch & Roth, 1999; Newcomer et al., 1999; 

Cochran et al., 2003). Major advances are being made in this area relating receptor subunit 

composition to behavioural relevance. For example, mice that overexpress GluN2B subunits 

show increased cognition and enhanced plasticity (Cui et al., 2011). While this level of detailed, 

molecular knowledge about receptors should lead to improved selectivity of drug treatments, it 

is equally important to understand the mechanisms leading to the activation or modulation of 

those receptors, including those involving the kynurenine pathway. 

 

The tryptophan-kynurenine pathway 

   Decades of interest in the metabolic products of tryptophan have focussed on 5-

hydroxytryptamine (5-HT or serotonin). However, the synthesis of 5-HT is now known to 

account for the metabolism of only 3% or less of non-protein tryptophan. The kynurenine 

pathway, in contrast, accounts for approximately 90% of tryptophan metabolism in most tissues 

(Stone & Darlington 2002). 

  The kynurenine pathway (Fig. 1) was identified in the early years of the twentieth century as 

the catabolic source of one of the newly recognised vitamins - vitamin B3 (nicotinic acid, 

nicotinamide or niacin). It was regarded solely as a route for the endogenous production of the 

vitamin to compensate for any dietary deficiency. The first product of tryptophan oxidation by the 

haemoprotein enzymes indoleamine-2,3-dioxygenase (IDO, found in most tissues) and 

tryptophan-2,3-dioxygenase (TDO, found mainly in the liver) is kynurenine, a compound 

identified originally in studies of the chemical composition of canine urine, from which it takes its 

name. The breakthrough into cognitive neuroscience came when two of the major components 

of the pathway – quinolinic acid and kynurenic acid - were shown to act on NMDA receptors 

(NMDAR). 
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Quinolinic acid 

   Quinolinic acid was originally found to excite neurones in the cerebral cortex of anaesthetised 

rats, an effect that was prevented by selective antagonists at NMDAR (Stone & Perkins, 1981). 

These receptors remain the most important sites of action of quinolinic acid, largely accounting 

for both its excitatory activity and its ability to produce axon-sparing excitotoxicity (Schwarcz et 

al., 1983). 

   There may be additional sites of action of quinolinic acid, although these have not yet been 

explored in detail. Thus it can generate, or promote the formation of, reactive oxygen species 

and has a generally pro-inflammatory profile within the immune system, increasing the 

expression and secretion of chemotactic molecules such as monocyte chemoattractant protein-

1 (MCP-1) and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) 

(Guillemin et al., 2003). These compounds can originate from several types of immune-

competent cells peripherally but are also released by microglia in the central nervous system 

(CNS). Both proteins attract immune-activated macrophages, which secrete inflammatory 

cytokines including tumour necrosis factor- (TNF). In addition to modulating neuronal 

excitability, therefore, quinolinic acid can also act as an initiator and promoter of local 

inflammation within the CNS. 

 

Kynurenic acid 

   Kynurenic acid is a product of tryptophan metabolism produced by the transamination of 

kynurenine by kynurenine aminotransferases (KAT) (Fig. 1). Kynurenic acid is an antagonist at 

glutamate ionotropic receptors responding to amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA), kainate or NMDA (Perkins & Stone 1982), although it is most active at the latter. 

The antagonism of NMDA results from kynurenic acid’s binding largely at the Gly-B site on the 

NMDAR complex (Stone & Darlington 2002).  Additional sites of action for kynurenic acid have 
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been reported recently such as the aryl hydrocarbon receptor (AHR) and the G-protein coupled 

receptor GPR35 (Stone et al., 2013) but their significance for brain function remains unclear. 

 

Kynurenines and cognitive function 

   A direct examination of the effects of kynurenines on brain neurochemistry and behaviour in 

experimental animals and their roles in cognitive disorders in human patients has  supported the 

view that this pathway plays a key role not only in several aspects of cognitive function but also 

in mediating the effects of environmental influences on cognition. 

   The simplest of the kynurenine metabolites to manipulate experimentally is kynurenic acid 

since its concentrations in the brain can be increased substantially by the simple expedient of 

administering its precursor, kynurenine, which readily crosses the blood-brain barrier. 

Kynurenate levels can also be raised by inhibiting the enzyme kynurenine-3-monoxygenase 

(KMO; also known as kynurenine-3-hydroxylase; Fig. 1) (Röver et al., 1997), which normally 

oxidises kynurenine to 3-hydroxykynurenine (3HK). Inhibition of KMO, therefore, increases the 

amount of kynurenine available for transamination to kynurenic acid.  

     Increasing cerebral kynurenate levels in this way produces behavioural and cognitive 

changes similar to those encountered in psychiatric conditions. Prominent among these 

changes are effects on sensory processing exemplified by changes in pre-pulse inhibition of 

auditory startle stimuli (Nilsson et al., 2006). This phenomenon has received a great deal of 

attention since, although it occurs in a number of psychiatric conditions, it is particularly 

prominent in schizophrenia and is reduced by treatment with antipsychotic drugs. It is usually 

considered to reflect sensorimotor gating and integration, properties that may underlie some of 

the confusional state that exists in early phases of schizophrenia. The ease with which 

endogenous levels of kynurenic acid can be increased to alter pre-pulse inhibition (Erhardt et al., 

2004; Nilsson et al., 2006) favours the concept that a pathological change in the kynurenine 

pathway could be involved in psychiatric dysfunction  
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   Increased levels of kynurenic acid have also been linked with deficits of spatial working 

memory (Chess et al., 2007). A particularly fascinating aspect of this finding is that it occurs not 

only after the acute elevation of kynurenate in adult animals, but also in adults several months 

after raising kynurenate levels peri-natally or during adolescence (Akagbosu et al., 2012; 

Pocivavsek et al., 2012). This latter observation presents an intriguing parallel with current 

views on the development of schizophrenia which suggest a neurodevelopmental origin 

established pre- or neo-natally and leading to the emergence of behavioural disorder in later life. 

In addition to spatial learning, kynurenic acid levels modulate stimulus processing and 

conditioned responding, while later work discovered changes in contextual fear conditioning and 

context discrimination (Chess et al., 2006). There is some selectivity in these actions, however, 

since cue-specific fear conditioning is not affected (Chess et al., 2009).  

    More recently, attention has moved to more sophisticated tests of cognitive performance. 

Increasing kynurenic acid levels by injections of kynurenine has been found to produce 

deficiencies in attentional set-shifting paradigms. While the treated and control animals tested 

were all able to acquire the initial, simple, compound discrimination and the moderately difficult 

intra-dimensional shift, animals with elevated CNS kynurenate exhibited deficits in acquiring and 

handling the extra-dimensional shift task (Alexander et al., 2012; Pocivavsek et al., 2012)  

   Although the artificial elevation of kynurenate levels is a valuable experimental approach to 

modelling a possible pathological state, it does not address the question of whether normal, 

physiological levels of kynurenate are involved in baseline cognitive function. This question has 

been addressed by lowering the levels of endogenous kynurenate. The deletion of the major 

KAT isoenzyme KAT-II results in a substantial (approximately 70%) decrease in the extracellular 

concentration of kynurenic acid in the rat CNS and this is accompanied by improved cognitive 

performance in a range of behavioural tasks including exploration, object recognition, and 

passive avoidance learning (Potter et al., 2010). These effects are paralleled by alterations of 

neuronal excitability and plasticity demonstrated by electrophysiological recordings in the 

hippocampus. Importantly, the selectivity of the kynurenic acid change resulting from KAT-II 
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deletion was confirmed by the fact that there were no associated changes in the levels of the 

NMDAR agonist quinolinic acid (Sapko et al., 2006). It is work of this kind that has led to the 

development of KAT inhibitor compounds for potential use as cognitive enhancers (Rossi et al., 

2010; Dounay et al., 2012).  

 

Cognitive disorders 

Schizophrenia  

     One of the disorders characterised almost exclusively by cognitive dysfunction is 

schizophrenia.  A widely accepted current view of this disorder is that it results from under-

activation of glutamate receptors – the ‘hypo-glutamatergic’ hypothesis. This concept has 

expanded the earlier focus on dopamine function in which the fundamental problem was 

thought to be overactivity of dopaminergic neurons in the ventral tegmento-striatal (accumbens) 

projections, associated with metabolic hypo-function in the prefrontal cortex (PFC). It now 

seems likely that changes in glutamate neurotransmission represent the more biochemically 

proximal defect in schizophrenia, which can lead secondarily to altered dopamine release 

and/or receptor expression. Certainly a primary role for glutamate is supported by the 

development of animal models showing cognitive deficits related to those in schizophrenia but 

induced by sub-chronic treatments with NMDAR antagonists such as ketamine, dizocilpine [MK-

801] or phencyclidine (Jentsch & Roth, 1999; Newcomer et al., 1999; Cochran et al., 2003). The 

use of phencyclidine in particular reproduces cognitive abnormalities seen either in the early 

positive or later negative phases of schizophrenia, including dysfunctional sensorimotor and 

contextual integration or pre-pulse inhibition (Jentsch & Roth, 1999; Phillips & Silversteinr, 2003; 

Cochran et al., 2003). These deficits are difficult to reproduce with older, dopamine-centred 

models (Lindsley et al., 2006).  

     The concentration of kynurenic acid is increased within brain tissue or cerebrospinal fluid 

(CSF) of patients with schizophrenia, a result that has been replicated by several groups in 

different cohorts of patients (Schwarcz et a l., 2001; Erhardt et al., 2004; Nilsson et al., 2005, 
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2006).The concentrations of kynurenic acid were several-fold higher than in normal control 

subjects, especially in the prefrontal cortex (PFC) where, as noted above, the ‘hypo-frontality’ 

characterised by reduced metabolic function has become the focus of interest in studies of 

schizophrenia. As predicted on this hypothesis, treatment with neuroleptic drugs reduces 

kynurenic acid levels in rodents (Ceresoli-Borroni et al., 2006).  

     The reason for the elevation of kynurenic acid concentrations in schizophrenia is still unclear 

although it may be caused by reduced levels of the enzymes KMO and 3-hydroxy-anthranilic 

acid oxidase (3HAO) (Fig. 1). The mRNA, protein levels and activity of these enzymes are 

reduced in post-mortem samples of PFC from schizophrenic patients, while activities of the first 

enzyme of the pathway (IDO), KAT and quinolinate phosphoribosyl transferase (QPRT) are 

normal (Sathyasaikumar et al., 2011; Wonodi et al., 2011). Experimentally, administration to 

rodents of the KMO blocking compound 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-

yl]benzenesulphonamide (Ro61-8048; Röver et al., 1997) produces a clear increase in 

kynurenic acid concentrations, supporting the concept that reducing enzyme activity does 

increase kynurenine production (Cozzi et al., 1999; Clark et al., 2005). 

    Although there are few studies to date on the genetics of tryptophan catabolism in relation to 

schizophrenia, there is an association between a single nucleotide polymorphism of KMO 

(rs1053230) and levels of kynurenic acid in the CSF (Holtze et al., 2012). The amino acid 

change produced by this mutation was considered important for the interaction between enzyme 

and its substrate (kynurenine) and may be considered a proof-of-concept that a minor genetic 

alteration can lead to increased kynurenic acid production. 

     While most of these studies have been performed on CNS tissue or CSF, there are reports 

of lowered kynurenic acid concentrations in the blood of patients (Myint et al., 2011) or a social 

isolation-induced rodent model (Moeller et al., 2012). The uncertain relationship between brain 

and blood measurements places serious limitations on the value of the latter for interpretation of 

events with the CNS, but a resolution of the discrepant results might lie in the role of the 

immune system in schizophrenia. The literature on individual cytokine levels or gene 
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polymorphisms in schizophrenia is confusing and often contradictory, but there seems to be a 

consensus that immune activation contributes to the symptomatology of the disorder, especially 

in acute exacerbations of the disease. Increased immune function, primarily in the blood, tends 

to induce the tissue expression and activity of both IDO and KMO, leading to higher levels of 

most kynurenine metabolites. Increased levels of kynurenine will pass into the brain and 

generate increased kynurenic acid which, as a charged, acidic molecule, will be trapped within 

the brain. This may be further enhanced by the presence of increased concentrations in the 

PFC of tumour necrosis factor- (TNF-) (Paterson et al., 2006) and other pro-inflammatory 

compounds which activate IDO. The conversion of kynurenine to kynurenic acid will induce the 

diffusion and transport of more kynurenine from the periphery. The various apparently 

conflicting data may therefore be integrated in a model that takes these peripheral and central 

pharmacokinetic factors into account to explain raised kynurenine and kynurenic acid levels in 

the CNS, at the same time as reduced levels in blood. 

     At the neurochemical level, increasing kynurenate levels in experimental animals in vivo 

increases the activity of dopaminergic neurons (Nilsson et al., 2006; Linderholm et al., 2007) 

and facilitates the dopamine release induced by amphetamine (Olsson et al., 2012). On the 

other hand, several studies which have examined directly the release and extracellular 

concentrations of dopamine have shown that kynurenic acid decreases dopamine levels in the 

striatum (Rassoulpour et al., 2005). These results are supported by the inhibition or deletion of 

KAT, which leads to reduced concentrations of kynurenate and which increases dopamine 

release in the striatum (Amori et al., 2009). Some of these changes in dopamine release may be 

indirectly caused by effects of kynurenate on glutamate levels which are decreased in the 

striatum, hippocampus or PFC by local applications of kynurenate or treatment with kynurenine 

(Carpenedo et al., 2001; Pocivavsek et al., 2011, 2012). Indeed, kynurenate appears to be a 

physiological modulator of glutamate and dopamine release, since release of both is increased 

when resting, endogenous levels of kynurenate are reduced by deleting KAT (Potter et al., 

2010; Pocivavsek et al., 2011).  The reduction in extracellular glutamate levels by kynurenic 
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acid is accompanied by impaired performance of mice or rats in tests of cognitive function such 

as the water-maze test for visuospatial memory and passive avoidance paradigms, while 

inhibition of KAT and the resulting lowering of kynurenic acid levels produces increased 

glutamate release and improved performance in these tasks as well as object exploration, 

object recognition, and spatial discrimination. These facilitated behaviours were associated with 

increased synaptic plasticity at the cellular level, reflected in greater long-term potentiation in the 

hippocampus in vitro (Pocivavsek et al., 2011). 

   Some of the data discussed here may be relevant to other conditions in which psychosis 

forms a major symptom. Thus, a proportion of patients infected with the human 

immunodeficiency virus (HIV) may develop severe psychotic symptoms resembling those seen 

in schizophrenia. In these patients the symptom severity appears to relate to the levels of 

kynurenic acid in the CSF (Atlas et al., 2007; Kandanearatchi & Brew, 2012). 

 

Dementia 

     Dementia appears in various guises such as Alzheimer's disease and vascular dementia or, 

as it is now believed, combinations of these two conditions. Early studies focussed on the 

potential neurotoxic effects of quinolinic acid, based on the several hundred-fold increase in the 

levels of this compound in the CSF of patients with HIV-linked dementia (Heyes et al., 1991). 

This disorder, now often known as HIV-Associated Neurocognitive Disorder (HAND) 

(Kandanearatchi & Brew, 2012) is usually reversible as the infection is treated and quinolinic 

acid concentrations fall.  

     Symptoms are accompanied by invasion of the CNS by inflammatory cytokines which gain 

entry after internalisation by peripheral monocytes and macrophages which enter the CNS 

before being transformed into microglia. Growing evidence suggests the existence of an 

inflammatory component in dementia in which quinolinic acid may be involved by means of its 

ability to induce the expression of chemokines such as MCP-1 and RANTES as noted above 

(Guillemin et al., 2003). These pro-inflammatory molecules are produced by immune-competent 
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cells in the periphery and by microglia in the CNS – cells functionally related to, and developed 

from, macrophages. A major action of MCP-1 is to attract and activate macrophages which 

release more quinolinic acid and potent inflammatory cytokines including the powerfully pro-

inflammatory TNF. Quinolinic acid can, therefore, initiate and promote the development of 

local inflammation within the CNS, a situation thought to lead to brain damage subsequently. 

   It has not proved possible to show any simple relationship between quinolinic acid and 

dementia in other conditions such as Alzheimer's disease, even though deposits of -amyloid 

proteins in the brain are characteristic of Alzheimer's disease and links have been noted with 

activity along the kynurenine pathway. Activity of IDO and quinolinic acid concentrations are 

increased in the amyloid plaques and microfibrillary tangles (Bonda et al., 2010; Guillemin et al., 

2005) and -amyloid peptides can induce IDO and kynureninase activities (Guillemin et al., 

2003; Walker et al., 2006). Quinolinic acid produces glial activation and cytokine release 

consistent with a role in the inflammatory and cytotoxic processes occurring in Alzheimer's 

disease (Ting et al., 2009) while pro-inflammatory cytokines potentiate the activation of IDO by 

-amyloid fragments including the most toxic Aβ(1-42) (Yamada et al., 2009), establishing a 

damaging positive feedback cycle. Nevertheless, there may be a more direct relationship 

between dementia and kynurenic acid, since levels of this compound in the blood and brain, 

together with the activity of IDO, increase with age to the extent that they correlate well with 

cognitive decline and imminent mortality in patients (Pertovaara et al., 2006). The gradual rise in 

kynurenate levels probably produces a progressively greater blockade of NMDAR in the CNS 

causing a generalised disruption of synaptic transmission. Inhibitors of KAT (see below) might 

slow this cognitive decline. 

    Recent work suggests a role for quinolinic acid in the accumulation of tau proteins, 

abnormally hyper-phosphorylated forms of which constitute the microfibrillary tangles which are 

frequently observed in Alzheimer's disease (Rahman et al., 2009).  
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Huntington's disease (HD) 

    Although this condition is often first diagnosed on the appearance of motor symptoms, these 

are preceded by cognitive abnormalities which can be revealed by appropriate testing. Patients 

with an increased likelihood of developing this inherited disorder show impaired performance on 

tasks such as attentional set shifting and semantic verbal fluence (Lawrence et al., 1998). Later 

work extended this profile to show deficits in pattern and spatial recognition memory, 

simultaneous and delayed matching-to-sample and aspects of visual working memory 

(Lawrence et al., 2000). Most of the disturbed cognitive functions are known to involve the 

striatum, consistent with the later emergence of motor symptoms caused by striatal 

neurodegeneration.  

     Early animal models of the disease involved the non-selective destruction of striatal neurons 

using excitotoxins such as kainic acid. Later, with the recognition that the agonist activity of 

quinolinic acid at NMDA receptors (Stone & Perkins, 1981) translated into neurotoxicity 

(Schwarcz et al., 2003), it soon became apparent that quinolinate generated a more selective 

animal model. Intrastriatal delivery of quinolinic acid produces a profile of neurochemical, 

electrophysiological and behavioural changes that closely mimic those seen in patients with HD 

(Beal et al., 1991; Popoli et al., 1994; Shear et al., 1998; Schwarcz et al., 2009).  

     More recently developed models involve engineering the expression of the abnormal HD 

protein huntingtin, the sequence of which is terminated by a series of glutamine residues, coded 

for by cytosine-adenine-guanine (CAG) repeats in the gene. Abnormal huntingtin can form 

aggregates that ultimately lead to neuronal death. The neuronal damage and behavioural 

sequelae seen in these animals appear to be mediated through activation of NMDA receptors 

(Heng et al., 2009). Levels of quinolinic acid and 3HK are increased in the neocortex and 

striatum and are also increased in human patients (Guidetti et al., 2006), along with activity of 

their inter-converting enzyme 3HAO (Schwarcz et al., 1988; Pearson et al., 1992; Guidetti et al., 

2000). The initial enzyme, IDO is also more active in patients in the more advanced stages of 

the disease (Stoy et al., 2005). The role of kynurenines may be strengthened by the finding that 
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3HK can enhance the toxic effects of quinolinic acid (Guidetti & Schwarcz, 1999). In the R6/2 

mouse model of Huntington's disease, activity of KMO is also increased (Sathyasaikumar et al., 

2010), results which would contribute to the increased conversion of tryptophan to 3HK and 

quinolinic acid. Intriguingly, quinolinic acid itself can promote the production of huntingtin (Tatter 

et al., 1995).  

   This potential involvement of the kynurenine pathway has been strongly supported by the 

discovery of a correlation between levels of components of the pathway and the length of the 

triplet codon CAG repeat (Forrest et al., 2010). The codon can be repeated up to 35 times in 

normal individuals, but if it exceeds 40, most patients exhibit symptoms of the disorder. The 

correlation between codon repeat number and kynurenine pathway metabolites is one of very 

few that have been demonstrated between the genetic abnormality and a biochemical 

parameter. The relationship is strengthened by the fact that the pre-motor cognitive dysfunction 

also correlates with the CAG repeat length (Jason et al., 1997).  

     An important discovery was that the kynurenine:tryptophan ratio correlated with levels of the 

pro-inflammatory cytokine interleukin-23 (IL-23), as did levels of kynurenic acid and anthranilic 

acid (Forrest et al., 2010). Increased levels of the latter compound had been reported previously 

in several inflammatory conditions (Darlington et al., 2010). Correlations were also revealed 

between kynurenine metabolites and blood concentrations of the soluble human leukocyte 

antigen-G (sHLA-G), an anti-inflammatory molecule. This would be consistent with earlier data 

that tryptophan and several kynurenine metabolites can induce cell surface and secreted forms 

of sHLA-G in immune system dendritic cells, leading to their reduced ability to activate T cells. 

This concept in turn would add to the evidence that several kynurenine metabolites have critical 

functions within the immune system as well as the nervous system (Stone et al., 2013). 

Interestingly, since interferon- is one of the most potent inducers of IDO and sHLA-G can 

induce the production of IFN- from peripheral blood mononuclear cells, it is likely that sHLA-G 

produces an indirect activation of the kynurenine pathway. The mechanisms by which IDO and 

sHLA-G act – separately or in combination – to affect T cell function, and the extent to which 
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they do so in a manner relevant to the motor or cognitive symptoms of HD, remain unclear. 

Overall, there are strong arguments for overactivity of these compounds being involved  in HD, 

probably generating cognitive symptoms via the kynurenine pathway. This proposal has been 

further strengthened by the discovery that expression of abnormal huntingtin in yeast cells can 

produce cell damage by increasing activity along the kynurenine pathway (Giorgini et al., 2005 ; 

Stone et al., 2012). 

 

  Immune function, kynurenines and cognition 

   The relationship between kynurenines and immune function may have a wide relevance to 

‘sickness behaviour’ and the lasting effects of infection on motor and cognitive function in 

conditions such as cerebral malaria (Clark et al., 2005) and trypanosomiasis (Rodgers et al., 

2009). Indeed, many features of what is often referred to as ‘sickness behaviour’ may be linked 

to kynurenine metabolism, including the anxiety and anhedonia or apathy that seem to be 

induced by activation of IDO (Salazar et al., 2012). The induction of IDO and KMO by infecting 

organisms is probably secondary to the increased expression of IFN- but may be the 

mechanism through which infection by viruses can produce cognitive dysfunction. The infection 

results in altered hippocampal neuron structure and impairs reversal learning in an adaptation of 

the water maze test of spatial memory (Jurgens et al., 2012). 

   Activation of the kynurenine pathway is also likely to account for the depression which follows 

viral or bacterial infections and treatment of patients with interferons (O’Connor et al., 2009; 

Raison et al., 2010; Dantzer et al., 2008).  

 

Stress 

      Stress causes cognitive changes and alterations of emotionality (Davidson & McEwen, 

2012) which may lead to mental illness (de Kloet et al., 2005). This may occur directly in adults, 

especially after experiencing chronic stress over many months or years (Marin et al., 2011) but 

can also appear in later life after the exposure to stress in early postnatal life, with the 
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appearance of defective memory and executive functioning (Pechtel & Pizzagalli 2011; Hedges 

& Woon 2011). Indeed, there is good evidence that pre-natal stress in the pregnant female can 

lead to the emergence of cognitive and emotional problems in the offspring in later life (Lupien 

et al., 2009).    

     The negative effect of stress on cognition may be linked to the activation of tryptophan 

metabolism by TDO (Miura et al., 2011; Kiank et al., 2010).  Whereas IDO is rather non-

selective in its metabolism of compounds with a basic indole structure, (including 5HT and 

melatonin), TDO is much more selective for tryptophan and is a high capacity, low affinity 

enzyme which maintains the blood levels of tryptophan around 60M. Hence, its importance is 

primarily to regulate the amounts of tryptophan to which immune system cells in the tissues or 

cells within the CNS are exposed. The role of TDO may be far more important than often 

realised since it is induced by glucocorticoids. These adrenal steroids are secreted in response 

to stress and their induction of TDO can potentially alter the blood levels of kynurenines to a 

much greater extent than IDO. This, therefore, is another mechanism by which an 

environmental factor – stress induced by a wide variety of life situations – could modify brain 

levels of quinolinic acid and kynurenic acid and modulate neuronal activity leading to changes in 

behaviour and cognitive function, or a susceptibility to external influences arising subsequently. 

     Exposure to corticosterone can markedly affect NMDAR function (Tse et al., 2012) and may 

lead to severe and persisting clinical depression and other disorders (Muscatell et al., 2009). 

For example, repeated stress has adverse effects on temporal order recognition tests (involving 

the PFC), associated with reduced NMDAR and AMPAR function (Yuen et al., 2012). Whether 

cognitive function is enhanced or suppressed depends on the amount of steroid present and the 

relative activation of glucocorticoid and mineralocorticoid receptors (Popoli et al., 2012). 

Glucocorticoids may affect glutamate receptors particularly in the PFC where they are believed 

to be crucial in the altered metabolic activity there linked with schizophrenia (Marin et al., 2011).  

 

Post-surgical cognitive recovery 
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     One further example of a link between kynurenines and cognition has emerged from a study 

of cognitive function in patients after cardiac bypass or major thoracic surgery, which should 

probably be viewed as major stressors. It is well established that major surgery under general 

anaesthesia is followed by cognitive deficits that may take months or years to resolve. In a study 

employing six independent tests of cognitive function, highly significant correlations were 

established between the levels of kynurenine metabolites and the degree of cognitive 

impairment tested at three time points after thoracic surgery (Forrest et al., 2011). No 

comparable correlations were seen between cognition and the levels of pro-inflammatory 

cytokines. The extent of the correlation was greater than had been noted for any molecular 

marker of intellectual functioning in previous studies. A similar result was reported more recently 

in which, for patients recovering from a stroke, the level of kynurenine pathway activation was 

correlated inversely with cognitive recovery (Gold et al., 2011), a finding which also supports the 

previously noted correlations between kynurenine pathway activation and the post-stroke infarct 

size (Darlington et al., 2007). 

 

Kynurenines and brain development 

     If changes along the kynurenine pathway, whether induced by stress, infection, surgery or 

other factors, are involved in CNS abnormalities in the adult, the question arises as to whether 

changes in the pathway early in life, or even prenatally by conditions affecting the pregnant 

mother, could influence cognitive function or behaviour in the offspring. Factors such as stress 

or infection could predispose some individuals to develop behavioural abnormalities when 

exposed to subsequent life events which would have less or no effect on individuals not 

exposed to those factors. In all these situations, the activation of tryptophan metabolism along 

the kynurenine pathway induced by steroids, cytokines or other agents released by stress and 

infection may be the common factor mediating changes in glutamate receptor function.  

    Prenatal exposure to the viral-mimetic double-stranded RNA complex 

polyinosinic:polycytidylic acid (poly(I:C)) can selectively alter the expression of a number of 
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proteins involved in early neurogenesis, axonal guidance and synapse formation in the brains of 

the postnatal offspring examined 21 days after birth (Forrest et al 2012). The changes observed 

included decreased expression of the NMDAR subunit GluN1, while subsequent work 

(unpublished) also indicates changes in the morphogenetic protein sonic hedgehog and -

synuclein levels, combined with an increased expression of tyrosine hydroxylase. Since these 

effects may involve the activation of the kynurenine pathway, studies were performed on the 

effects of inhibiting kynurenine production using Ro61-8048. 

     When pregnant rats were treated prenatally with Ro61-8048, there was a substantial (more 

than 10-fold) increase in the brain levels of kynurenic acid together with decreased expression 

of GluN2A subunits and increased GluN2B in the embryo brains after only 5hours, with changes 

in sonic hedgehog protein after 24h (Forrest et al., 2013). When the offspring were allowed to 

mature to 21 days of postnatal age (P21), the brains exhibited increased expression of GluN2A, 

GluN2B and the associated postsynaptic density protein PSD-95. Levels of sonic hedgehog 

were now increased relative to vehicle-exposed animals, while increased expression of 

doublecortin and Proliferating Cell Nuclear Antigen (PCNA) suggested increased neurogenesis 

(Forrest et al., 2013). The overall amounts and ratio between the different glutamate receptor 

subunits is increasingly considered to be critical in synaptic function, plasticity and 

neurodegeneration (Hardingham and Bading, 2011). These molecular changes in early brain 

development were associated with enhanced neuronal excitability in the postnatal offspring and 

increased long-term potentiation, which is considered critical in some aspects of cognitive 

function (Forrest et al., 2013). 

   An important link between these various changes and behaviour is indicated by work showing 

that the administration of kynurenine to rats during adolescence can lead to impairments in 

social behaviour in adulthood while identical treatment to adults has no such effect (Trecartin & 

Bucci 2011). In the related study referred to earlier (Pocivavsek et al., 2012), kynurenine 

treatment before and immediately after birth produced not only the expected increase in 

kynurenic acid levels but also produced significant cognitive dysfunction in adulthood, including 
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abnormal performance in passive avoidance learning and in the water maze spatial learning 

task.  

 

   Nicotinic cholinoceptors 

     The focus of attention, in the relationship between kynurenines and cognition, continues to 

be on NMDAR but there is evidence that kynurenic acid may also have effects on α7-

homomeric nicotinic receptors (α7NRs) for acetylcholine. Modifications in the expression and 

function of 7NRs can result in marked changes in some aspects of cognitive behaviour 

(Deiana et al., 2011; Graef et al., 2011). The septo-hippocampal projections include a 

substantial cholinergic component in which the release of acetylcholine can activate muscarinic 

and nicotinic receptors on the target neurones. A similar projection from the nucleus basalis to 

the neocortex seems to underlie aspects of learning as well as logical thought and reasoning. 

The 7NRs are involved in cognitive function and may be underactive in schizophrenia (Mexal 

et al., 2010; Breese et al., 2000), while their deletion has profoundly negative consequences for 

learning and memory (Hernandez et al., 2010). Conversely, selective agonists at α7NRs can 

suppress the positive and negative symptoms of schizophrenia, including aspects of cognitive 

function such as visual recognition, logic and rational thought (Mueller & Dursun, 2011). In the 

early stages of Alzheimer's disease, nicotinic cholinergic agonists or cholinesterase inhibitors 

have beneficial effects, restoring some degree of memory and reasoning in the disease and in 

animal models (Kihara et al., 2001; Ren et al., 2007). 

     The evidence for a role of kynurenic acid in modulating nicotinic receptor function, however, 

remains the subject of intense debate. The initial observations were reported using neuronal 

cultures in which depolarisation was produced by agonists at α7NRs (Hilmas et al., 2001) and 

kynurenic acid appeared to be more potent an antagonist than at NMDARs. Subsequent work 

failed to confirm this greater potency in intact brain slices in which kynurenic acid blocked 

NMDARs and 7NRs with comparable potency (Stone, 2007). The differences between these 
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conclusions may be related to the presence and access of endogenous glutamate and 

kynurenic acid itself to sub-synaptic or extra-synaptic sites, which will be more accessible in cell 

culture than in slices (Ren et al., 2007). Subsequent studies have examined the phenomenon in 

more detail (Alkondon et al., 2004, 2011) while others have failed to demonstrate any 

antagonism at 7NRs using concentrations of kynurenic acid which completely block responses 

to NMDA (Mok et al., 2009; Dobelis et al., 2012). In addition, a study of dopaminergic activation 

by kynurenic acid (discussed above) concluded that 7NRs were not involved, suggesting that 

the phenomenon was probably caused exclusively by blockade of NMDARs (Linderholm et al., 

2007). Interestingly, the loss of kynurenic acid produced by the deletion of KAT-II was 

associated with increased sensitivity of α7NRs which was not caused by increased receptor 

expression (Alkondon et al., 2004). Overall, it is possible that the apparent effects of kynurenic 

acid on 7NRs may be secondary to the effects of kynurenic acid on NMDARs. 

 

Drug development 

     It will be clear that there are several approaches to modulating activity along the kynurenine 

pathway that may have therapeutic potential in the treatment of cognitive disorders. In general, 

most medicinal chemistry has been focussed on the inhibition of KMO or IDO. In 

neurodegenerative disorders such as Huntington's disease, the excitotoxic activity of quinolinic 

acid and the experimental evidence for the importance of this or other metabolites such as 3-HK 

suggest that inhibition of KMO would be neuroprotective by reducing the generation of these 

toxins.  The continuing development of interest in kynurenine pathway inhibitors, especially for 

KMO (Cesura & Röver, 1999), is reflected in the growing number of patents being taken for 

novel series of compounds with acceptable levels of inhibitory activity. These include series of 

2-aminobenzoyl compounds (Daily et al.,  2010; Zisapel et al., 2012)(Figs. 3A,B), pyrrole 

derivatives (Della Torre et al., 2001) (Fig. 3C), a variety of 2-amino-4-phenyl-4-oxo-butanoic 

acid derivatives (Varasi et al., 2001)(Fig. 3D) as well as a range of 5-(3-phenyl-3-oxo-propyl)-
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1H-tetrazole derivatives (Pevarello et al., 2000)(Fig. 3E) and 4-phenyl-4oxo-2-butenoic acid 

derivatives (Giordani et al., 2000) (Fig. 3F). Some of the compounds produced by these latter 

two groups showed IC50 values less than 1M against KMO, while three of the series 

synthesised by Varasi et al., (2001) had IC50s between 140 and 270nM.  A different chemical 

avenue involved the development of cyclopropane-1-carboxylic acids (Benatti et al., 2005) (Fig. 

3G).  

     Most of these patents specify a wide range of potential clinical applications, including 

neurodegenerative conditions such as Huntington's disease and stroke, while others have 

focussed primarily on the role of kynurenine pathway involvement in disorders such as 

Huntington's disease (Muchowski et al., 2011) or on the cerebral side effects of metabolic 

disorders such as diabetes (Autier et al., 2010). On addition to patenting the concept of 

examining the kynurenine pathway as a route to the treatment of Huntington's disease 

(Muchowski et al., 2009), the group generated a series of compounds, several of which inhibited 

KMO by more than 50% at a concentration of 10M. 

    Several multi-compound patents cover compounds designed to inhibit IDO (Andersen et al., 

2012) (Figs. 3H,J). Of a large series of compounds the most potent was adociaquinone B (Fig. 

3J) with a Ki of 25nM against IDO. The inhibition of IDO may involve actions on both the CNS 

and immune systems and are more often being considered for their potential anti-cancer 

properties. IDO is a key player in immune surveillance and its control over infectious organisms 

and cancer cell removal. Although it is still considered possible that this role of IDO is mediated 

partly through the local depletion (starvation) of tryptophan concentrations resulting from its 

activation, it is increasingly thought that downstream metabolites of the kynurenine pathway, 

especially 3HK and 3HAA are involved, in view of their ability to alter the balance between pro-

inflammatory and anti-inflammatory T cell populations such as Th1, Th2 and Th17. In fact, the 

potential impact of KMO inhibition on the immune system has not yet been explored in depth, so 

that it is not possible to state whether KMO inhibition would have any deleterious effects on 
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immune function under basal or challenged conditions, to the extent that these would 

compromise their therapeutic utility. 

     In addition, KMO inhibition seems to have little effect on quinolinic acid concentrations, either 

because of compensatory changes in enzyme expression or activity, or because of the shift to 

an alternative pathway. The major suspect in the latter case would be the metabolism of 

kynurenine to anthranilic acid followed by the spontaneous oxidation of this compound to 3HAA 

and the normal conversion of the latter to quinolinic acid. Interestingly, there is growing 

evidence that this route is recruited in a range of inflammatory conditions in which the levels of 

anthranilic acid are increased several-fold above normal levels (Darlington et al., 2010). 

 

KAT inhibition 

     A different therapeutic approach to the kynurenine pathway lies in the possibility of reducing 

kynurenic acid levels in order to decrease the overactivity in dopaminergic projections which 

characterises psychotic disorders such as schizophrenia. Schizoid delusions and hallucinations 

can also follow the chronic use of psychedelic agents such as cannabis and may develop in the 

advanced phases of Parkinson's disease treated with dopamine-facilitating agents. 

Dopaminergic overactivity may be secondary to the hypo-glutamatergic activity caused by 

increased kynurenic acid concentrations in these various situations.  

     The simplest practical approach to achieving reliably reduced levels of kynurenic acid in vivo 

would be to lower production by inhibiting KAT, since this not only has the desired effect on 

kynurenic acid production but seems to create little interference with the rest of the kynurenine 

metabolic pathway. Simple inhibitors such as L-cysteine sulphinate were described by Kocki et 

al. (2003), producing substantial inhibition at low micromolar concentrations.  Several other 

relatively non-selective compounds have been shown to have inhibitory activity including the 

nitric oxide synthase inhibitor L-nitro-arginine (Luchowski et al., 2001), 3-nitropropionic acid and 

1-methyl-4-phenyl-pyridinium (MPP+) (Luchowski et al., 2002). 
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     Several groups have subsequently produced more specific chemical structures with high 

selectivity and potency as KAT inhibitors. One of the first highly specific targeted compounds 

was (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; Fig. 4A) (Pellicciari et al., 2006) which showed 

high selectivity against rat KAT with little effect on any of the other enzymes of the kynurenine 

pathway. When administered to rats, ESBA reduced kynurenic acid levels in the brain and 

produced a corresponding increase in the release and extracellular concentrations of 

acetylcholine (Zmarowski et al., 2009), dopamine (Amori et al., 2009) and glutamate 

(Konradsson-Geuken et al., 2010). In addition to these neurochemical effects, the 

intracerebroventricular administration of ESBA to rats produced a significantly improved visuo-

spatial memory performance in a water maze paradigm (Pocivavsek et al., 2011). Involvement 

of kynurenic acid in these neurochemical and behavioural effects of ESBA were prevented by 

the simultaneous administration of kynurenine or kynurenic acid itself. Unfortunately, later work 

indicated that ESBA was much less active as an inhibitor of the human KAT enzyme because of 

a higher molecular flexibility in the region of the substrate binding site (Casazza et al., 2011).  

     A second compound developed as a more potent but still selective inhibitor was (S)-(-)-9-(4-

aminopiperazin-1-yl)-8-fluoro-3-methyl- 6-oxo-2,3-dihydro-6H-1-oxa- 3a-azaphenalene-5-

carboxylic acid (BFF-122; Fig. 4B)  (Rossi et al., 2010). This agent blocks KAT activity of in vitro 

brain slices (Alkondon et al., 2011) and in vivo after direct, intrastriatal administration (Amori et 

al., 2009) but has not been examined in as much detail as ESBA, or in behavioural tests. 

     Akladios et al., (2012) reported that 6-ethoxy-6-oxo-5-(2-phenylhydrazono) hexanoic acid 

and  3-(2-carboxyethyl)-1H-indole- 2-carboxylic acid were promising compounds from which to 

derive novel inhibitors of human KAT-I. Of 12 derivatives described the most active was 5-(2-(4-

chlorophenyl)-hydrazono)-6-ethoxy-6-oxohexanoic acid (CHEH; Fig. 4C) which exhibited an 

IC50 of 19.8 M. Even this level of activity is sometimes considered inadequate for the 

development of clinically useful drugs, especially when concentrations comparable with the 

IC50 must be achieved within the CNS without accompanying side effects that might be 

produced by the inevitably higher concentrations existing peripherally. 
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     One route to compounds with significantly higher activity may be that pursued by Dounay et 

al., (2012) who generated the bi-cyclic compound PF-04859989 (Fig. 4D) as a potent and 

selective inhibitor of human and rat KAT-II with an IC50 of approximately 20nM.  X-ray crystal 

structure and C-13 NMR studies of PF-04859989 bound to KAT-II revealed the formation of a 

covalent complex between the compound and pyridoxal phosphate, a key co-factor for KAT-II 

activity. The formation of this adduct effectively blocked activity of the enzyme in an irreversible 

fashion. A strong advantage of PF-04859989 over previous inhibitors is its ability to penetrate 

the CNS relatively readily. The same group has now extended the chemical family represented 

by PF-04859989 with a series of isosteric analogues, also active in the nanomolar range, which 

retain good penetration into the CNS after systemic administration (Henderson et al., 2013). 

Although no behavioural data have yet been reported using these compounds, they appear to 

have a promising, non-toxic profile which could lead to their further development. 

     Since kynurenic acid acts primarily at the Gly-B-binding site for glycine, acting partly in a 

competitive manner, the combined use of a KAT inhibitor with a glycine transport inhibitor to 

increase extracellular levels of glycine could represent an important synergistic approach yet to 

be tested experimentally. 

     A number of patents explore the molecular flexibility of blocking KAT using endogenous 

compounds as inhibitors with potential clinical utility. Some of these are targeted specifically at 

KAT, including a variety of naturally occurring aliphatic compounds (Guidetti et al., 2008) while 

others are intended as more general inhibitors of transaminases with the ability to include 

inhibition of KAT (Teichberg, 2008, 2010). Since most transaminases have limited selectivity for 

individual enzymes, the overall balance of inhibitory activity is probably similar with these two 

approaches. 

 

Summary 

     The kynurenine pathway generates a series of neuroactive compounds, the most prominent 

of which can modulate the activity of neuronal pathways by altering the degree of activation 
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(quinolinic acid) or blockade (kynurenic acid) of NMDARs. This review has highlighted some of 

the disorders for which there is strong evidence implicating the kynurenines in the behavioural 

and cognitive symptoms. With several enzymes along the route, the kynurenine pathway is 

eminently suitable for the development of pharmacological interventions to treat and, possibly, 

to prevent cognitive dysfunction in these and other CNS disorders. 
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Figure legends 

 

Figure1 

A summary of the major components of the kynurenine pathway for the oxidation of tryptophan. 

 

 

Figure 2 

A summary of the involvement of kynurenines in three groups of CNS cognitive disorders: (A) 

schizophrenia and related conditions such as autism spectrum disorders (SZ), (B) Huntington's 

disease (HD) and (C) dementias such as HIV-Associated Neurocognitive Disorders (HAND), 

with probable relevance to conditions such as Alzheimer's disease. The diagram also illustrates 

the influences of stress on the kynurenine pathway via the induction of glucocorticoid secretion 

which induces TDO in the liver, and infections which cause the induction of IDO in several 

subsets of leucocytes via the action of interferons. The activation of IDO or TDO can produce 

localised depletion of tryptophan from proliferating cells while increasing the concentrations of 

kynurenine and its metabolites in tissues. Some of these metabolites such as kynurenic acid 

and quinolinic acid are active primarily on neuronal function, while 3HK and 3HAA have their 

main effects on T cell proliferation and cytokine secretion. 

Abbreviations:  

Glu: glutamate 

DAm: dopamine 

3HK: 3-hydroxykynurenine  

3HAA: 3-hydroxyanthranilic acid  

Htt: huntingtin 

IDO: indoleamine-2,3-dioxygenase 

Kyn: kynurenine  

Kyna: kynurenic acid  
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7NRs: 7-nicotinic cholinoceptors 

Quin: quinolinic acid 

TDO: tryptophan-2,3-dioxygenase 

Trp: tryptophan  

 

 

 

Figure 3 

Structures of compounds described in patents for inhibitors of kynurenine-3-monoxygenase or 

indoleamine-2,3-dioxygenases targeted as CNS disorders. 

 

 

 

Figure 4 

Structures of compounds described in patents for inhibitors of kynurenine aminotransferase. 
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Figure1 
A summary of the major components of the kynurenine pathway for the oxidation of 
tryptophan. 
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Figure 2 
A summary of the involvement of kynurenines in three groups of CNS cognitive disorders: (A) 
schizophrenia and related conditions such as autism spectrum disorders (SZ), (B) Huntington's 
disease (HD) and (C) dementias such as HIV-Associated Neurocognitive Disorders (HAND), 
with probable relevance to conditions such as Alzheimer's disease. The diagram also illustrates 
the influences of stress on the kynurenine pathway via the induction of glucocorticoid secretion 
which induces TDO in the liver, and infections which cause the induction of IDO in several 
subsets of leucocytes via the action of interferons. The activation of IDO or TDO can produce 
localised depletion of tryptophan from proliferating cells while increasing the concentrations of 
kynurenine and its metabolites in tissues. Some of these metabolites such as kynurenic acid 
and quinolinic acid are active primarily on neuronal function, while 3HK and 3HAA have their 
main effects on T cell proliferation and cytokine secretion. 
 
Abbreviations:  
Glu: glutamate 
DAm: dopamine 
3HK: 3-hydroxykynurenine  
3HAA: 3-hydroxyanthranilic acid  
Htt: huntingtin 
IDO: indoleamine-2,3-dioxygenase 
Kyn: kynurenine  
Kyna: kynurenic acid  

7NRs: 7-nicotinic cholinoceptors 
Quin: quinolinic acid 
TDO: tryptophan-2,3-dioxygenase 
Trp: tryptophan  



50 

 

 

 

S

H
N

X1

R

R

X2

O

O O
O

Andersen et al.

S

H
N

O

O O
O

O

O

adociaquinone B

S

(X)nO

COR

Benatti et al. 

O

R2

R3

N N

N

N

R

R1

H

Pevarello et al. 

O HN

X

Y

W

R

O

Varasi et al. 

NH
R2

R1

A

O

N
H

X
Y

R

Zisapel et al. 

R

N
H

O

N
H

R2

NO2

NO2
R3

R1

Daily et al. 

N

N

R1

R

R5
R4

R3

R2

O

Della Torre et al. 

O

R2

R1

R

O

Z

Y

X

Giordani et al. 

A CB

JHG

FED

 

Figure 3 

Structures of compounds described in patents for inhibitors of kynurenine-3-

monoxygenase or indoleamine-2,3-dioxygenases targeted as CNS disorders. 
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Figure 4 

Structures of compounds described in patents for inhibitors of kynurenine 

aminotransferase. 

 


