101 research outputs found

    Novel yeast taxa from the cold: description of Cryolevonia giraudoae sp. nov. and Camptobasidium gelus sp. nov.

    Get PDF
    Twenty-one psychrophilic yeast isolates related to the Camptobasidiaceae family in the Microbotryomycetes class were obtained from ice collected from cold environments worldwide. A new psychrophilic species from the recently described genus Cryole-vonia, Cryolevania giraudoae is proposed to accommodate 18 isolates from Patagonia (Argentina) and Antarctica (holotype CRUB 2086T). In addition, a new psychrophilic species in the genus Camptobasidium is described as Camptobasidium gelus sp. nov. (holotype CBS 8941T), based on three isolates from glacial ice in the Russel glacier (Greenland ice sheet) and Antarctica. The strict psychrophilic profile is the salient feature of both novel species.Fil: de Garcia, Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de InvestigaciĂłn y Desarrollo en IngenierĂ­a de Procesos, BiotecnologĂ­a y EnergĂ­as Alternativas. Universidad Nacional del Comahue. Instituto de InvestigaciĂłn y Desarrollo en IngenierĂ­a de Procesos, BiotecnologĂ­a y EnergĂ­as Alternativas; ArgentinaFil: Trochine, Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales; ArgentinaFil: Uetake, Jun. National Institute of Polar Research; JapĂłnFil: Bellora, NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales; ArgentinaFil: Libkind, Diego. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino PatagĂłnico de TecnologĂ­as BiolĂłgicas y Geoambientales; Argentin

    The adaptation of rainbow trout to warmer water: oxidative damage in the germinal line

    Get PDF
    Contemporary evolution was observed in a feral rainbow trout (Oncorhynchus mykiss) population of a thermal stream (Valcheta) in Northern Patagonia, in terms of juvenile thermal tolerance and preferred temperature. Other authors showed that high-temperature treatment applied to male rainbow trout juveniles increased the thermal tolerance in the next generation. This implies a high mutation rate and/or a modified epigenetic inheritance. Comparisons were made among a) a rainbow trout strain adapted in terms of upper thermal tolerance and higher preferred temperature (Valcheta stream), b) a wild temperate stream population (Guillelmo stream), and c) two temperate farmed strains. We examined: Oxidative damage (lipid peroxidation) and activities of antioxidant enzymes; Catalase (CAT), Glutathione S-Transferases (GST), and Superoxide Dismutase (SOD), in liver, testicle, and spermatozoa. Semen fatty acid composition, sperm morphology, sperm motility, and fertilization performance in samples before and after the application of cryopreservation procedures were also evaluated. The observed responses, mainly related to the sperm membrane, reinforces the idea that ROS can affect the germinal line of male rainbow trout juveniles subjected to high water temperature. Our results suggest that the acquired thermal tolerance traits may be part of a wide spectrum of novel characteristics produced as a consequence of an enhanced mutation rate and/or a different DNA methylation pattern, induced by higher temperatures and mediated by ROS.Centro de InvestigaciĂłn y Desarrollo en CriotecnologĂ­a de Alimento

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, Îł-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity.

    Get PDF
    3-Nitro-1H-1,2,4-triazole-based acetamides bearing a biphenyl- or a phenoxyphenyl moiety have shown remarkable antichagasic activity both in vitro and in an acute murine model, as well as substantial in vitro antileishmanial activity but lacked activity against human African trypanosomiasis. We have shown now that by inserting a methylene group in the linkage to obtain the corresponding propanamides, both antichagasic and in particular anti-human African trypanosomiasis potency was increased. Therefore, IC50 values at low nM concentrations against both T. cruzi and T. b. rhodesiense, along with huge selectivity indices were obtained. Although several propanamides were active against Leishmania donovani, they were slightly less potent than their corresponding acetamides. There was a good correlation between lipophilicity (clogP value) and trypanocidal activity, for all new compounds. Type I nitroreductase, an enzyme absent from the human host, played a role in the activation of the new compounds, which may function as prodrugs. Antichagasic activity in vivo was also demonstrated with representative propanamides.This work was supported in part by internal funds of the Radiation Medicine Department at NorthShore University HealthSystem. In addition, the Drugs for Neglected Diseases initiative (DNDi) received financial support from the Bill & Melinda Gates Foundation (BMGF) to perform the in vitro screenings against parasites

    Structural Characterization of Acidic M17 Leucine Aminopeptidases from the TriTryps and Evaluation of Their Role in Nutrient Starvation in Trypanosoma brucei

    Get PDF
    Leucine aminopeptidase (LAP) is found in all kingdoms of life and catalyzes the metal-dependent hydrolysis of the N-terminal amino acid residue of peptide or amino acyl substrates. LAPs have been shown to participate in the N-terminal processing of certain proteins in mammalian cells and in homologous recombination and transcription regulation in bacteria, while in parasites, they are involved in host cell invasion and provision of essential amino acids for growth. The enzyme is essential for survival in Plasmodium falciparum, where its drug target potential has been suggested. We report here the X-ray structures of three kinetoplastid acidic LAPs (LAP-As from Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major) which were solved in the metal-free and unliganded forms, as well as in a number of ligand complexes, providing insight into ligand binding, metal ion requirements, and oligomeric state. In addition, we analyzed mutant cells defective in LAP-A in Trypanosoma brucei, strongly suggesting that the enzyme is not required for the growth of this parasite either in vitro or in vivo. In procyclic cells, LAP-A was equally distributed throughout the cytoplasm, yet upon starvation, it relocalizes in particles that concentrate in the perinuclear region. Overexpression of the enzyme conferred a growth advantage when parasites were grown in leucine-deficient medium. Overall, the results suggest that in T. brucei, LAP-A may participate in protein degradation associated with nutrient depletion. IMPORTANCE Leucine aminopeptidases (LAPs) catalyze the hydrolysis of the N-terminal amino acid of peptides and are considered potential drug targets. They are involved in multiple functions ranging from host cell invasion and provision of essential amino acids to site-specific homologous recombination and transcription regulation. In kinetoplastid parasites, there are at least three distinct LAPs. The availability of the crystal structures provides important information for drug design. Here we report the structure of the acidic LAPs from three kinetoplastids in complex with different inhibitors and explore their role in Trypanosoma brucei survival under various nutrient conditions. Importantly, the acidic LAP is dispensable for growth both in vitro and in vivo, an observation that questions its use as a specific drug target. While LAP-A is not essential, leucine depletion and subcellular localization studies performed under starvation conditions suggest a possible function of LAP-A in the response to nutrient restriction

    The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Get PDF
    BACKGROUND: The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS: To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. CONCLUSIONS/SIGNIFICANCE: TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design

    Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis

    Get PDF
    • 

    corecore