166 research outputs found

    Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient

    Full text link
    In early embryonic development, spatial gradients of diffusible signaling molecules play important roles in controlling differentiation of cell types or arrays in diverse tissues. Thus, the concentration of exogenous cytokines or growth factors at any given time is crucial to the formation of an enriched population of a desired cell type from primitive stem cells in vitro. Microfluidic technology has proven very useful in the creation of cell-friendly microenvironments. Such techniques are, however, currently limited to a few cell types. Improved versatility is required if these systems are to become practically applicable to stem cells showing various plasticity ranges. Here, we built a microfluidic platform in which cells can be exposed to stable concentration gradients of various signaling molecules for more than a week with only minimal handling and no external power source. To maintain stability of the gradient concentration, the osmotic pumping performance was optimized by balancing the capillary action and hydraulic pressure in the inlet reagent reservoirs. We cultured an enriched population of neural progenitors derived from human embryonic stem cells in our microfluidic chamber for 8 days under continuous cytokine gradients (sonic hedgehog, fibroblast growth factor 8, and bone morphogenetic protein 4). Neural progenitors successfully differentiated into neurons, generating a complex neural network. The average numbers of both neuronal cell body clusters and neurite bundles were directly proportional to sonic hedgehog concentrations in the gradient chip. The system was shown to be useful for both basic and translational research, with straightforward mechanisms and operational schemes. S TEM C ELLS 2009;27:2646–2654Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64440/1/202_ftp.pd

    A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells

    Full text link
    We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO-1 tight junction protein and acetylated Α-tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F-actin and exhibited disassembly of cytosolic F-actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca 2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC-inulin) was measured before and after Ca 2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707–716. © 2010 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78065/1/22835_ftp.pd

    Efficient Dielectrophoretic Patterning of Embryonic Stem Cells in Energy Landscapes Defined by Hydrogel Geometries

    Get PDF
    In this study, we have developed an integrated microfluidic platform for actively patterning mammalian cells, where poly(ethylene glycol) (PEG) hydrogels play two important roles as a non-fouling layer and a dielectric structure. The developed system has an embedded array of PEG microwells fabricated on a planar indium tin oxide (ITO) electrode. Due to its dielectric properties, the PEG microwells define electrical energy landscapes, effectively forming positive dielectrophoresis (DEP) traps in a low-conductivity environment. Distribution of DEP forces on a model cell was first estimated by computationally solving quasi-electrostatic Maxwell’s equations, followed by an experimental demonstration of cell and particle patterning without an external flow. Furthermore, efficient patterning of mouse embryonic stem (mES) cells was successfully achieved in combination with an external flow. With a seeding density of 107 cells/mL and a flow rate of 3 μL/min, trapping of cells in the microwells was completed in tens of seconds after initiation of the DEP operation. Captured cells subsequently formed viable and homogeneous monolayer patterns. This simple approach could provide an efficient strategy for fabricating various cell microarrays for applications such as cell-based biosensors, drug discovery, and cell microenvironment studies

    Microfluidic Perfusion for Regulating Diffusible Signaling in Stem Cells

    Get PDF
    Background Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands. Methodology/Principal Findings We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs. Conclusions/Significance Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.National Institutes of Health (U.S.) (NIH grant No. EB007278)Swiss National Science FoundationSwiss National Science Foundatio

    Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    Get PDF
    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)

    Microfluidic Organ‐on‐a‐Chip Technology for Advancement of Drug Development and Toxicology

    Get PDF
    In recent years, the exploitation of phenomena surrounding microfluidics has seen an increase in popularity, as researchers have found a way to use their unique properties to create superior design alternatives. One such application is representing the properties and functions of different organs on a microscale chip for the purpose of drug testing or tissue engineering. With the introduction of “organ‐on‐a‐chip” systems, researchers have proposed various methods on various organ‐on‐a‐chip systems to mimic their in vivo counterparts. In this article, a systematic approach is taken to review current technologies pertaining to organ‐on‐a‐chip systems. Design processes with attention to the particular instruments, cells, and materials used are presented

    Cell Culture on MEMS Platforms: A Review

    Get PDF
    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bioincompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bioincompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore. Agency for Science, Technology and Research (R-185-001-045-305)Singapore. Ministry of EducationSingapore. Ministry of Education (Grant R-185- 000-135-112)Singapore. National Medical Research CouncilSingapore. National Medical Research Council (Grant R-185-000-099-213)Jassen Cilag (Firm)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project)Global Enterprise for Micro-Mechanics and Molecular Medicin

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities
    corecore