743 research outputs found

    Query-guided End-to-End Person Search

    Full text link
    Person search has recently gained attention as the novel task of finding a person, provided as a cropped sample, from a gallery of non-cropped images, whereby several other people are also visible. We believe that i. person detection and re-identification should be pursued in a joint optimization framework and that ii. the person search should leverage the query image extensively (e.g. emphasizing unique query patterns). However, so far, no prior art realizes this. We introduce a novel query-guided end-to-end person search network (QEEPS) to address both aspects. We leverage a most recent joint detector and re-identification work, OIM [37]. We extend this with i. a query-guided Siamese squeeze-and-excitation network (QSSE-Net) that uses global context from both the query and gallery images, ii. a query-guided region proposal network (QRPN) to produce query-relevant proposals, and iii. a query-guided similarity subnetwork (QSimNet), to learn a query-guided reidentification score. QEEPS is the first end-to-end query-guided detection and re-id network. On both the most recent CUHK-SYSU [37] and PRW [46] datasets, we outperform the previous state-of-the-art by a large margin.Comment: Accepted as poster in CVPR 201

    CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction

    Full text link
    Given the recent advances in depth prediction from Convolutional Neural Networks (CNNs), this paper investigates how predicted depth maps from a deep neural network can be deployed for accurate and dense monocular reconstruction. We propose a method where CNN-predicted dense depth maps are naturally fused together with depth measurements obtained from direct monocular SLAM. Our fusion scheme privileges depth prediction in image locations where monocular SLAM approaches tend to fail, e.g. along low-textured regions, and vice-versa. We demonstrate the use of depth prediction for estimating the absolute scale of the reconstruction, hence overcoming one of the major limitations of monocular SLAM. Finally, we propose a framework to efficiently fuse semantic labels, obtained from a single frame, with dense SLAM, yielding semantically coherent scene reconstruction from a single view. Evaluation results on two benchmark datasets show the robustness and accuracy of our approach.Comment: 10 pages, 6 figures, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, June, 2017. The first two authors contribute equally to this pape

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement.Comment: As published in CVPR 2019 (camera ready version), with supplementary materia

    Deformation of surfaces in 2D persistent homology

    Get PDF
    In the context of 2D persistent homology a new metric has been recently introduced, the coherent matching distance. In order to study this metric, the filtering function is required to present particular “regularity” properties, based on a geometrical construction of the real plane, called extended Pareto grid. This dissertation shows a new result for modifying the extended Pareto grid associated to a filtering function defined on a smooth closed surface, with values in the real plane. In future, the technical result presented here could be used to prove the genericity of the regularity conditions assumed for the filtering function

    Landscapes of data sets and functoriality of persistent homology

    Full text link
    The aim of this article is to describe a new perspective on functoriality of persistent homology and explain its intrinsic symmetry that is often overlooked. A data set for us is a finite collection of functions, called measurements, with a finite domain. Such a data set might contain internal symmetries which are effectively captured by the action of a set of the domain endomorphisms. Different choices of the set of endomorphisms encode different symmetries of the data set. We describe various category structures on such enriched data sets and prove some of their properties such as decompositions and morphism formations. We also describe a data structure, based on coloured directed graphs, which is convenient to encode the mentioned enrichment. We show that persistent homology preserves only some aspects of these landscapes of enriched data sets however not all. In other words persistent homology is not a functor on the entire category of enriched data sets. Nevertheless we show that persistent homology is functorial locally. We use the concept of equivariant operators to capture some of the information missed by persistent homology
    • …
    corecore