17 research outputs found

    Measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections in pp collisions at s=7TeV

    Get PDF
    Differential cross sections as a function of transverse momentum pTpT are presented for the production of ϒ(nS)ϒ(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9View the MathML sourcefb−1 in pp collisions at View the MathML sources=7TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity |y|<1.2|y|<1.2 and dimuon transverse momentum in the range View the MathML source10<pT<100GeV. The measurements show a transition from an exponential to a power-law behavior at View the MathML sourcepT≈20GeV for the three ϒ states. Above that transition, the ϒ(3S)ϒ(3S) spectrum is significantly harder than that of the ϒ(1S)ϒ(1S). The ratios of the ϒ(3S)ϒ(3S) and ϒ(2S)ϒ(2S) differential cross sections to the ϒ(1S)ϒ(1S) cross section show a rise as pTpT increases at low pTpT, then become flatter at higher pTpT

    Search for vectorlike charge 2/3 T quarks in proton-proton collisions at root(s)=8 TeV

    Get PDF
    Peer reviewe

    Solar Ultraviolet Irradiance and Cancer Incidence and Mortality

    No full text

    Association between Vitamin D Levels and Nonalcoholic Fatty Liver Disease: Potential Confounding Variables

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD), historically considered to be the hepatic component of the metabolic syndrome, is a spectrum of fat-associated liver conditions, in the absence of secondary causes, that may progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Disease progression is closely associated with body weight or fatness, dyslipidemia, insulin resistance, oxidative stress, and inflammation. Recently, vitamin D deficiency has been linked to the pathogenesis and severity of NAFLD because of vitamin D "pleiotropic" functions, with roles in immune modulation, cell differentiation and proliferation, and regulation of inflammation. Indeed, several studies have reported an association between vitamin D and NAFLD/NASH. However, other studies have failed to find an association. Therefore, we sought to critically review the current evidence on the association between vitamin D deficiency and NAFLD/NASH, and to analyze and discuss some key variables that may interfere with this evaluation, such as host-, environment-, and heritability-related factors regulating vitamin D synthesis and metabolism; definitions of deficient or optimal vitamin D status with respect to skeletal and nonskeletal outcomes including NAFLD/NASH; methods of measuring 25(OH)D; and methods of diagnosing NAFLD as well as quantifying adiposity, the cardinal link between vitamin D deficiency and NAFLD

    Search for top squark production in fully hadronic final states in proton-proton collisions at s =13 TeV

    No full text
    © 2021 CERN. for the CMS Collaboration.A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb-1. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state

    Search for nonresonant Higgs boson pair production in final states with two bottom quarks and two photons in proton-proton collisions at root s=13 TeV

    No full text
    A search for nonresonant production of Higgs boson pairs via gluon-gluon and vector boson fusion processes in final states with two bottom quarks and two photons is presented. The search uses data from proton-proton collisions at a center-of-mass energy of root s = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb(-1). No significant deviation from the background-only hypothesis is observed. An upper limit at 95% confidence level is set on the product of the Higgs boson pair production cross section and branching fraction into gamma gamma b (b) over bar. The observed (expected) upper limit is determined to be 0.67 (0.45) fb, which corresponds to 7.7 (5.2) times the standard model prediction. This search has the highest sensitivity to Higgs boson pair production to date. Assuming all other Higgs boson couplings are equal to their values in the standard model, the observed coupling modifiers of the trilinear Higgs boson self-coupling kappa(lambda) and the coupling between a pair of Higgs bosons and a pair of vector bosons c(2V) are constrained within the ranges -3.3 < kappa(lambda) < 8.5 and -1.3 < c(2V) < 3.5 at 95% confidence level. Constraints on kappa(lambda) are also set by combining this analysis with a search for single Higgs bosons decaying to two photons, produced in association with top quark-antiquark pairs, and by performing a simultaneous fit of kappa(lambda) and the top quark Yukawa coupling modifier kappa(t)

    Observation of triple J/ψ meson production in proton-proton collisions

    No full text
    Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272−104+141(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process
    corecore