923 research outputs found

    Population Diversity of Odontotermes formosanus (Shiraki) (Termitidae, Macrotermitinae) from Different Geographic Locations in Anhui Province, China

    Get PDF
    Genetic differentiation, genetic exchange, and influence of natural geographic barrier on the genetic structure of 20 geo-populations of Odontotermes formosanus sampled from different regions in Anhui province, China were detected using ISSR. Seventy-nine polymorphic loci were detected with nine ISSR primers, and the percentage of polymorphic bands was 87.78%. The average number of alleles per locus was 1.8778 ± 0.3294, and the effective number of alleles was 1.4741 ± 0.3438. The Nei′s gene diversity and Shannon information index were 0.2832 ± 0.1696 and 0.4307 ± 0.2274, respectively. All the populations were divided into two groups through UPGMA clustering analysis based on Nei’s genetic distance. One group comprised geo-populations A, C, and J, and the other group consisted of the remaining clusters. Mantel test results revealed no significant correlation between genetic similarity and geographical distance, as well as between elevation. High levels of genetic diversity, genetic mutation, and genetic differentiation were also detected among the geo-populations of O. formosanus. This study revealed the gene flow and possible migration paths of O. formosanus, which are necessary for continuous monitoring and prevention of this species

    Effect of Bacillus subtilis SY1 on antifungal activity and plant growth

    Get PDF
    Abstract: Agriculture soil in some areas of China is seriously damaged due to years of irrational farming practices. Soil-borne disease is a major problem of soil pollution, which affects yield and quality of agricultural products. Ecological remediation of soil is an effective way to solve this problem. In this study, Bacillus subtilis SY1 was successfully used to antagonist several normal fungal pathogens in eggplant. The growth and pathogenic tolerance of the host plant were improved after inoculation. In the seedling test, sprout tendency, accumulative germination percentage, sprout index, and vigour index of seeds increased 24%, 24%, 35%, and 64%, respectively. Inoculation also made the seedlings stronger and improved their plant-morphologic characters significantly. When infected by fungal pathogen, the activity of protective enzymes in inoculated seedlings improved, which helped lessening membrane damage by superoxide anion

    Protective Effects of Squid Ink Extract Towards Hemopoietic Injuries Induced by Cyclophosphamine

    Get PDF
    To investigate the protective effects of squid ink in chemotherapy, BALB/c mice were used as animal models of injuries induced by cyclophosphamine, a well known chemotherapeutic drug. The mice were randomly divided into five groups with the same number of males and females in each group. At the end of the experiment, animals were sacrificed to investigate organ indexes and antioxidant ability of the spleen, peripheral blood profile and quantities of bone marrow nucleated cells. Results showed that the hemopoietic function of mice was injured by cyclophosphamine, as indicated by decreases of contents of erythrocytes, leukocytes, hemoglobin and bone marrow nucleated cells (P<0.01), while platelets were not affected (P>0.05), as well as modification of organ indexes (P<0.05) and spleen antioxidant ability (P<0.05 or P<0.01), whereas sepia extract markedly increased the levels of erythrocytes, leukocytes, hemoglobin and bone marrow nucleated cells (P<0.01), but not platelets (P>0.05), and reversed the effects of cyclophosphamine on organ indexes and antioxidant ability of spleen (P<0.01 or P<0.05). In addition, squid ink extract did not change marrow hemopoiesis but improved the antioxidant ability of spleen in the animals. The data suggest that squid ink extract can protect the hemopoietic system from chemotherapeutic injury and could be employed to develop cell-protective drugs for use in clinical treatment of tumours

    Particle swarm optimization based networked control system design with uncertainty

    Full text link
    This study discusses the design of state feedback control for networked control system (NCS) with uncertainty, where the feedback controller is used to solve the latency and the packet dropout caused by NCS. The conventional design approach generally adopts Lyapunov stability theorem to analyse the stability of NCSs and then Lyapunov-Krasovskii stability criterion is solved to obtain the control gain matrix. Rather than using complex Lyapunov-Krasovskii stability criterion and solving difficult linear matrix inequality (LMI) problem in the control design, this study attempts to utilize particle swarm optimization (PSO) algorithm to search an optimal feedback control gain for the NCS. Finally, the computer simulation is illustrated the proposed control strategy and demonstrated the control performance

    Overexpression of IL-7 enhances cisplatin resistance in glioma

    Get PDF
    Cisplatin is one of the most commonly used chemotherapeutic agents for glioma patients. In this study, array comparative genomic hybridization (aCGH) was used to identify genes associated with cisplatin resistance in a human glioma cell line. The cisplatin-resistant U251/CP2 cell line was derived by stepwise selection using cisplatin. The genetic aberrations of the U251 parental cell line and the U251/CP2 cells were analyzed using aCGH. RT-PCR was used to detect the expression of the altered genes revealed by aCGH. The sensitivity of glioma cells to cisplatin was determined by using the MTT assay. Apoptosis was detected using flow cytometry and western blot analysis. The IC50 value of cisplatin in U251/CP2 cells was five times higher than its IC50 in U251 cells. The U251 cells lost at least one copy each of the CFHR1 and CFHR3 genes, and both CFHR1 and CFHR3 were homozygously deleted in U251/CP2 cells. The U251/CP2 cells gained two to three copies of C8orf70 and IL-7 genes. IL-7 mRNA expression was studied in 12 glioma cell lines, and expression was positively correlated with the IC50 of cisplatin. Furthermore, IL-7 mRNA expression was also positively correlated with the IC50 of cisplatin in 91 clinical glioma specimens. Additionally, treatment with recombinant human IL-7 (rhIL-7) enhanced cisplatin resistance and increased the relative growth rate of the glioma cells. Moreover, the apoptosis induced by cisplatin could be inhibited by IL-7. In conclusion, our results suggest that IL-7 may play an important role in cisplatin resistance in glioma

    Optimization for visible light photocatalytic water splitting: Gold-coated and surface-textured TiO2 inverse opal nano-networks

    Get PDF
    A gold nanoparticle-coated and surface-textured TiO2 inverse opal (Au/st-TIO) structure that provides a dramatic improvement of photoelectrochemical hydrogen generation has been fabricated by nano-patterning of TiO2 precursors on TiO2 inverse opal (TIO) and subsequent deposition of gold NPs. The surface-textured TiO2 inverse opal (st-TIO) maximizes the photon trapping effects triggered by the large dimensions of the structure while maintaining the adequate surface area achieved by the small dimensions of the structure. Au NPs are incorporated to further improve photoconversion efficiency in the visible region via surface plasmon resonance. st-TIO and Au/st-TIO exhibit a maximum photocurrent density of ???0.58 mA cm-2 and ???0.8 mA cm-2, which is 2.07 and 2.86 times higher than that of bare TIO, respectively, at an applied bias of +0.5 V versus an Ag/AgCl electrode under AM 1.5 G simulated sunlight illumination via a photocatalytic hydrogen generation reaction. The excellent performance of the surface plasmon-enhanced mesoporous st-TIO structure suggests that tailoring the nanostructure to proper dimensions, and thereby obtaining excellent light absorption, can maximize the efficiency of a variety of photoconversion devices.close10

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore