505 research outputs found

    A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 4 (2009): e6372, doi:10.1371/journal.pone.0006372.Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU) ribosomal RNA (rRNA) genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes. We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM) and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs) projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments. Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.This work was supported by grants from the W.M. Keck Foundation and the Woods Hole Center for Oceans and Human Health from the National Institutes of Health and National Science Foundation (NIH/NIEHS 1 P50 ES012742-01 and NSF/OCE 0430724-J) (LAZ and SH)

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Environmental tolerance of three gammarid species with and without invasion record under current and future global warming scenarios

    Get PDF
    Aim: Numerous regions worldwide are highly impacted by anthropogenic activities and globalization, with climate change and species introductions being among the greatest stressors to biodiversity and ecosystems. A main donor region of non‐indigenous species (NIS) for numerous European water bodies, as well as in the North American Great Lakes is the Ponto‐Caspian region (i.e., Black, Azov and Caspian Seas), with some of those species having significant impact on local communities and ecosystem functioning. Location: Northern European, Ponto‐Caspian and North American regions. Methods: To determine environmental tolerance of native species and related NIS under current and future global warming scenarios of the Baltic Sea, we conducted common garden experiments to test temperature tolerance of three euryhaline gammarid species: one Baltic (Gammarus oceanicus), one Ponto‐Caspian (Pontogammarus maeoticus) and one North American species (Gammarus tigrinus) in two different salinities. Results: Our results determined that mortality of P. maeoticus in all temperature treatments (i.e., increased, control, and decreased) at the end of both experiments (i.e., conducted in salinities of 10 and 16 g/kg) was lower when compared to mortality of G. oceanicus and (c) G. tigrinus. The highest mortality was observed for G. oceanicus, reaching 100% in both experiments in the increased temperature treatment. Main conclusions: Due to the high environmental tolerance of the Ponto‐Caspian species tested in this study, as well as the fact that Ponto‐Caspian species evolved in environmentally variable habitats and currently inhabit warmer waters than species from North America and Northern Europe, we suggest that species from the Ponto‐Caspian region may benefit from global warming when invading new areas. Those new invasions may, in the best case scenario, increase biodiversity of the Baltic Sea. However, if notorious invaders arrive, they may have a significant impact on local communities and ecosystem functioning

    Fungal diversity of selected habitat specific Cynorkis species (Orchidaceae) in the central highlands of Madagascar

    Get PDF
    About 90% of Cynorkis species are endemic to the biodiversity hotspot of Madagascar. This terrestrial habitat-specific genus received little study for fungal diversity to support conservation. We evaluated the diversity of culturable fungi of 11 species and soil characteristics from six sites spanning a >40 km radius in and along the region’s inselbergs. Peloton-forming fungi were grown in vitro from root/protocorm slices and positively identified using DNA sequencing. The fungal diversity was then correlated with soil pH, NO3-N, P, and K. All species harbored either putative mycorrhizal associates in the Rhizoctonia complex or Hypocreales fungi. Tulasnella Operational Taxonomic Units (OTUs) were most prevalent in all soil types while Serendipita OTUs were found in species inhabiting granite/rock outcrops in moist soil (seepage areas). Most Cynorkis species were present in soil with low NO3-N and P levels with diversity of mycorrhizal fungi inversely correlated to NO3-N levels. Of the different orchid life stages sampled, only one species (Cynorkis fastigiata) yielded putative mycorrhizal fungi from juvenile stages. As diversity of mycorrhizal fungi of Cynorkis spp. was negatively correlated with NO3-N, and majority of the studied taxa were found in soils with low NO3-N and P contents, reintroduction studies must include analysis of N and P in detail. For the first time, we showed that the assemblage of culturable fungi in the roots of habitat-specific species of Cynorkis (Orchidaceae) are intimately tied to specific soil characteristics

    Eukaryotic richness in the abyss: insights from pyrotag sequencing

    Get PDF
    Background: The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. Methodology/Principal Findings: Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA) V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs) per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. Conclusions/Significance: In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes.French ANR Aquaparadox; ANR DeepOases; Swiss National Science Foundation [31003A-125372]; WM Keck foundationinfo:eu-repo/semantics/publishedVersio

    Impacts of Hurricanes Katrina and Rita on the microbial landscape of the New Orleans area

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of National Academy of Sciences of the USA for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 104 (2007): 9029-9034, doi:10.1073/pnas.0610552104.Floodwaters in New Orleans from Hurricanes Katrina and Rita were observed to contain high levels of fecal indicator bacteria and microbial pathogens, generating concern about long-term impacts of these floodwaters on the sediment and water quality of the New Orleans area and Lake Pontchartrain. We show here that fecal indicator microbe concentrations in offshore waters from Lake Pontchartrain returned to prehurricane concentrations within 2 months of the flooding induced by these hurricanes. Vibrio and Legionella species within the lake were more abundant in samples collected shortly after the floodwaters had receded compared with samples taken within the subsequent 3 months; no evidence of a long-term hurricane-induced algal bloom was observed. Giardia and Cryptosporidium were detected in canal waters. Elevated levels of fecal indicator bacteria observed in sediment could not be solely attributed to impacts from floodwaters, as both flooded and nonflooded areas exhibited elevated levels of fecal indicator bacteria. Evidence from measurements of Bifidobacterium and bacterial diversity analysis suggest that the fecal indicator bacteria observed in the sediment were from human fecal sources. Epidemiologic studies are highly recommended to evaluate the human health effects of the sediments deposited by the floodwaters.This work was funded by NSF-NIEHS Oceans and Human Health Program (NSF OCE0432368, OCE0432479, OCE0430724 and NIEHS P50 ES12736, ES012740, ES012742), the NSF-SGER Program (OCE 0554402, OCE 0554674, OCE 0554850, OCE0600130), the NSF-REU Program, and by the Georgia Sea Grant College Program (NA04OAR170033)

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
    corecore