417 research outputs found

    Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys

    Full text link
    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or "kick" velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression may be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles < 300), surveys like Euclid or LSST can be sensitive to vk > 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles < 3000, we find that imaging surveys can be sensitive to vk ~ 10 km/s for lifetimes < 10 Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.Comment: 15 pages, 7 figures. Submitted to PR

    Pogodnosti i izazovi determinističkog referentnog modela radijskog kanala

    Get PDF
    The paper introduces a new paradigm for reference channel models. Current reference channel models are designed as platforms that generate radio channels for testing using random values for their parameters. These parameters follow some pre-established distribution based on process called parameterization, i.e. statistical processing of previous real measurements or accurate ray tracing simulations. The paper argues that random generated channels give either no new insight or even delusive information and should be replaced with the initial set of radio channels that was used for parameterization. Therefore a deterministic reference channel model, as an emulator of previously recorded real radio channels, is proposed and its potential elaborated.U radu se uvodi nova paradigma za referentni model radijskog kanala. Postojeći referentni modeli radijskog kanala dizajnirani su kao platforma koja generira radio kanale za testiranje pomoću slučajnih vrijednosti za svoje parametre. Ovi parametri prate neke unaprijed utvrđene raspodjele koje potječu iz procesa parametrizacije, odnosno statističke obrade prethodnih mjerenja ili točnih simulacija metodom slijeđenja zrake. U radu se tvrdi da slučajno generirani kanali ili ne daju nove uvide ili čak daju obmanjujuće informacije i valja ih zamijeniti s početnim skupom radijskih kanala koji je korišten za parametrizaciju. Stoga je predložen deterministički referentni model radijskog kanala, kao emulator prethodno snimljenih stvarnih radio kanala, te je njegov potencijal razrađen

    Open Science via HUBzero: Exploring Five Science Gateways Supporting and Growing their Open Science Communities

    Get PDF
    The research landscape applying computational methods has become increasingly interdisciplinary and complex regarding the research computing ecosystem with novel hardware, software, data, and lab instruments. Reproducibility of research results, the usability of tools, and sharing of methods are all crucial for timely collaboration for research and teaching. HUBzero is a widely used science gateway framework designed to support online communities with efficient sharing and publication processes. The paper discusses the growth of communities for the five science gateways nanoHUB, MyGeoHub, QUBEShub & SCORE, CUE4CHNG, and HubICL using the HUBzero Platform to foster open science and tackling education with a diverse set of approaches and target communities. The presented methods and magnitude of the communities elucidate successful means for science gateways for fostering open science and open education

    Neural and physiological data from participants listening to affective music

    Get PDF
    Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to investigate this through a series of experiments into how humans react to affective musical stimuli and how physiological and neurological signals recorded from those participants change in accordance with self-reported changes in affect. In this paper, the datasets recorded over the course of this project are presented, including details of the musical stimuli, participant reports of their felt changes in affective states as they listened to the music, and concomitant recordings of physiological and neurological activity. We also include non-identifying meta data on our participant populations for purposes of further exploratory analysis. This data provides a large and valuable novel resource for researchers investigating emotion, music, and how they affect our neural and physiological activity

    Applying scale-free mass estimators to the Local Group in Constrained Local Universe Simulations

    Full text link
    We use the recently proposed scale-free mass estimators to determine the masses of the Milky Way (MW) and Andromeda (M31) galaxy in a dark matter only Constrained Local UniversE Simulation (CLUES). While these mass estimators work rather well for isolated spherical host systems, we examine here their applicability to a simulated binary system with a unique satellite population similar to the observed satellites of MW and M31. We confirm that the scale-free estimators work also very well in our simulated Local Group galaxies with the right number of satellites which follow the observed radial distribution. In the isotropic case and under the assumption that the satellites are tracking the total gravitating mass, the power-law index of the radial satellite distribution N(<r)r3γN(<r)\propto r^{3-\gamma} is directly related to the host's mass profile M(<r)r1αM(<r)\propto r^{1-\alpha} as α=γ2\alpha=\gamma-2. The use of this relation for any given γ\gamma leads to highly accurate mass estimations which is a crucial point for observer, since they do not know a priori the mass profile of the MW and M31 haloes. We discuss possible bias in the mass estimators and conclude that the scale-free mass estimators can be satisfactorily applied to the real MW and M31 system.Comment: 14 pages, 6 figures, 6 tables. Accepted in MNRAS 2012 March 29. Received 2012 March 29; in original form 2011 September 2

    The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes

    Full text link
    We use two simulations performed within the Constrained Local UniversE Simulation (CLUES) project to study both the shape and radial alignment of (the dark matter component of) subhaloes; one of the simulations is a dark matter only model while the other run includes all the relevant gas physics and star formation recipes. We find that the involvement of gas physics does not have a statistically significant effect on either property -- at least not for the most massive subhaloes considered in this study. However, we observe in both simulations including and excluding gasdynamics a (pronounced) evolution of the dark matter shapes of subhaloes as well as of the radial alignment signal since infall time. Further, this evolution is different when positioned in the central and outer regions of the host halo today; while subhaloes tend to become more aspherical in the central 50% of their host's virial radius, the radial alignment weakens in the central regime while strengthening in the outer parts. We confirm that this is due to tidal torquing and the fact that subhaloes at pericentre move too fast for the alignment signal to respond.Comment: 10 pages, 8 figures, 2 tables, accepted for publication in MNRAS, replaced with proof-corrected version (minor typos

    Constraining dark matter halo properties using lensed SNLS supernovae

    Full text link
    This paper exploits the gravitational magnification of SNe Ia to measure properties of dark matter haloes. The magnification of individual SNe Ia can be computed using observed properties of foreground galaxies and dark matter halo models. We model the dark matter haloes of the galaxies as truncated singular isothermal spheres with velocity dispersion and truncation radius obeying luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift range 0.2 < z < 1 is used to constrain models of the dark matter haloes associated with foreground galaxies. The best-fitting velocity dispersion scaling law agrees well with galaxy-galaxy lensing measurements. We further find that the normalisation of the velocity dispersion of passive and star forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher relations, respectively. If we make no assumption on the normalisation of these relations, we find that the data prefer gravitational lensing at the 92 per cent confidence level. Using recent models of dust extinction we deduce that the impact of this effect on our results is very small. We also investigate the brightness scatter of SNe Ia due to gravitational lensing. The gravitational lensing scatter is approximately proportional to the SN Ia redshift. We find the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag at the 95 per cent confidence level). If this model is correct, the contribution from lensing to the intrinsic brightness scatter of SNe Ia is small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Constraining warm dark matter with cosmic shear power spectra

    Full text link
    We investigate potential constraints from cosmic shear on the dark matter particle mass, assuming all dark matter is made up of light thermal relic particles. Given the theoretical uncertainties involved in making cosmological predictions in such warm dark matter scenarios we use analytical fits to linear warm dark matter power spectra and compare (i) the halo model using a mass function evaluated from these linear power spectra and (ii) an analytical fit to the non-linear evolution of the linear power spectra. We optimistically ignore the competing effect of baryons for this work. We find approach (ii) to be conservative compared to approach (i). We evaluate cosmological constraints using these methods, marginalising over four other cosmological parameters. Using the more conservative method we find that a Euclid-like weak lensing survey together with constraints from the Planck cosmic microwave background mission primary anisotropies could achieve a lower limit on the particle mass of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for publication in JCA

    Determining orbits for the Milky Way's dwarfs

    Full text link
    We calculate orbits for the Milky Way dwarf galaxies with proper motions, and compare these to subhalo orbits in a high resolution cosmological simulation. We use this same simulation to assess how well are able to recover orbits in the face of measurement errors, a time varying triaxial gravitational potential, and satellite-satellite interactions. We find that, for present measurement uncertainties, we are able to recover the apocentre r_a and pericentre r_p to ~ 40%. However, even with better data the non-sphericity of the potential and satellite interactions during group infall make the orbital recovery more challenging. Dynamical friction, satellite mass loss and the mass evolution of the main halo play a more minor role. We apply our technique to nine Milky Way dwarfs with observed proper motions. We show that their mean apocentre is consistent with the most massive subhalos that form before z=10, lending support to the idea that the Milky Way dwarfs formed before reionisation.Comment: 2 pages, 1 figure, conference proceeding in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popesc
    corecore