417 research outputs found
Effects of Unstable Dark Matter on Large-Scale Structure and Constraints from Future Surveys
In this paper we explore the effect of decaying dark matter (DDM) on
large-scale structure and possible constraints from galaxy imaging surveys. DDM
models have been studied, in part, as a way to address apparent discrepancies
between the predictions of standard cold dark matter models and observations of
galactic structure. Our study is aimed at developing independent constraints on
these models. In such models, DDM decays into a less massive, stable dark
matter (SDM) particle and a significantly lighter particle. The small mass
splitting between the parent DDM and the daughter SDM provides the SDM with a
recoil or "kick" velocity vk, inducing a free-streaming suppression of matter
fluctuations. This suppression may be probed via weak lensing power spectra
measured by a number of forthcoming imaging surveys that aim primarily to
constrain dark energy. Using scales on which linear perturbation theory alone
is valid (multipoles < 300), surveys like Euclid or LSST can be sensitive to vk
> 90 km/s for lifetimes ~ 1-5 Gyr. To estimate more aggressive constraints, we
model nonlinear corrections to lensing power using a simple halo evolution
model that is in good agreement with numerical simulations. In our most
ambitious forecasts, using multipoles < 3000, we find that imaging surveys can
be sensitive to vk ~ 10 km/s for lifetimes < 10 Gyr. Lensing will provide a
particularly interesting complement to existing constraints in that they will
probe the long lifetime regime far better than contemporary techniques. A
caveat to these ambitious forecasts is that the evolution of perturbations on
nonlinear scales will need to be well calibrated by numerical simulations
before they can be realized. This work motivates the pursuit of such a
numerical simulation campaign to constrain dark matter with cosmological weak
lensing.Comment: 15 pages, 7 figures. Submitted to PR
Pogodnosti i izazovi determinističkog referentnog modela radijskog kanala
The paper introduces a new paradigm for reference channel models. Current reference channel models are designed as platforms that generate radio channels for testing using random values for their parameters. These parameters follow some pre-established distribution based on process called parameterization, i.e. statistical processing of previous real measurements or accurate ray tracing simulations. The paper argues that random generated channels give either no new insight or even delusive information and should be replaced with the initial set of radio channels that was used for parameterization. Therefore a deterministic reference channel model, as an emulator of previously recorded real radio channels, is proposed and its potential elaborated.U radu se uvodi nova paradigma za referentni model radijskog kanala. Postojeći referentni modeli radijskog kanala dizajnirani su kao platforma koja generira radio kanale za testiranje pomoću slučajnih vrijednosti za svoje parametre. Ovi parametri prate neke unaprijed utvrđene raspodjele koje potječu iz procesa parametrizacije, odnosno statističke obrade prethodnih mjerenja ili točnih simulacija metodom slijeđenja zrake. U radu se tvrdi da slučajno generirani kanali ili ne daju nove uvide ili čak daju obmanjujuće informacije i valja ih zamijeniti s početnim skupom radijskih kanala koji je korišten za parametrizaciju. Stoga je predložen deterministički referentni model radijskog kanala, kao emulator prethodno snimljenih stvarnih radio kanala, te je njegov potencijal razrađen
Open Science via HUBzero: Exploring Five Science Gateways Supporting and Growing their Open Science Communities
The research landscape applying computational methods has become increasingly interdisciplinary and complex regarding the research computing ecosystem with novel hardware, software, data, and lab instruments. Reproducibility of research results, the usability of tools, and sharing of methods are all crucial for timely collaboration for research and teaching. HUBzero is a widely used science gateway framework designed to support online communities with efficient sharing and publication processes. The paper discusses the growth of communities for the five science gateways nanoHUB, MyGeoHub, QUBEShub & SCORE, CUE4CHNG, and HubICL using the HUBzero Platform to foster open science and tackling education with a diverse set of approaches and target communities. The presented methods and magnitude of the communities elucidate successful means for science gateways for fostering open science and open education
Neural and physiological data from participants listening to affective music
Music provides a means of communicating affective meaning. However, the neurological mechanisms by which music induces affect are not fully understood. Our project sought to investigate this through a series of experiments into how humans react to affective musical stimuli and how physiological and neurological signals recorded from those participants change in accordance with self-reported changes in affect. In this paper, the datasets recorded over the course of this project are presented, including details of the musical stimuli, participant reports of their felt changes in affective states as they listened to the music, and concomitant recordings of physiological and neurological activity. We also include non-identifying meta data on our participant populations for purposes of further exploratory analysis. This data provides a large and valuable novel resource for researchers investigating emotion, music, and how they affect our neural and physiological activity
Applying scale-free mass estimators to the Local Group in Constrained Local Universe Simulations
We use the recently proposed scale-free mass estimators to determine the
masses of the Milky Way (MW) and Andromeda (M31) galaxy in a dark matter only
Constrained Local UniversE Simulation (CLUES). While these mass estimators work
rather well for isolated spherical host systems, we examine here their
applicability to a simulated binary system with a unique satellite population
similar to the observed satellites of MW and M31. We confirm that the
scale-free estimators work also very well in our simulated Local Group galaxies
with the right number of satellites which follow the observed radial
distribution. In the isotropic case and under the assumption that the
satellites are tracking the total gravitating mass, the power-law index of the
radial satellite distribution is directly related
to the host's mass profile as .
The use of this relation for any given leads to highly accurate mass
estimations which is a crucial point for observer, since they do not know a
priori the mass profile of the MW and M31 haloes. We discuss possible bias in
the mass estimators and conclude that the scale-free mass estimators can be
satisfactorily applied to the real MW and M31 system.Comment: 14 pages, 6 figures, 6 tables. Accepted in MNRAS 2012 March 29.
Received 2012 March 29; in original form 2011 September 2
The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes
We use two simulations performed within the Constrained Local UniversE
Simulation (CLUES) project to study both the shape and radial alignment of (the
dark matter component of) subhaloes; one of the simulations is a dark matter
only model while the other run includes all the relevant gas physics and star
formation recipes. We find that the involvement of gas physics does not have a
statistically significant effect on either property -- at least not for the
most massive subhaloes considered in this study. However, we observe in both
simulations including and excluding gasdynamics a (pronounced) evolution of the
dark matter shapes of subhaloes as well as of the radial alignment signal since
infall time. Further, this evolution is different when positioned in the
central and outer regions of the host halo today; while subhaloes tend to
become more aspherical in the central 50% of their host's virial radius, the
radial alignment weakens in the central regime while strengthening in the outer
parts. We confirm that this is due to tidal torquing and the fact that
subhaloes at pericentre move too fast for the alignment signal to respond.Comment: 10 pages, 8 figures, 2 tables, accepted for publication in MNRAS,
replaced with proof-corrected version (minor typos
Constraining dark matter halo properties using lensed SNLS supernovae
This paper exploits the gravitational magnification of SNe Ia to measure
properties of dark matter haloes. The magnification of individual SNe Ia can be
computed using observed properties of foreground galaxies and dark matter halo
models. We model the dark matter haloes of the galaxies as truncated singular
isothermal spheres with velocity dispersion and truncation radius obeying
luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe
Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift
range 0.2 < z < 1 is used to constrain models of the dark matter haloes
associated with foreground galaxies. The best-fitting velocity dispersion
scaling law agrees well with galaxy-galaxy lensing measurements. We further
find that the normalisation of the velocity dispersion of passive and star
forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher
relations, respectively. If we make no assumption on the normalisation of these
relations, we find that the data prefer gravitational lensing at the 92 per
cent confidence level. Using recent models of dust extinction we deduce that
the impact of this effect on our results is very small. We also investigate the
brightness scatter of SNe Ia due to gravitational lensing. The gravitational
lensing scatter is approximately proportional to the SN Ia redshift. We find
the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag
at the 95 per cent confidence level). If this model is correct, the
contribution from lensing to the intrinsic brightness scatter of SNe Ia is
small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Constraining warm dark matter with cosmic shear power spectra
We investigate potential constraints from cosmic shear on the dark matter
particle mass, assuming all dark matter is made up of light thermal relic
particles. Given the theoretical uncertainties involved in making cosmological
predictions in such warm dark matter scenarios we use analytical fits to linear
warm dark matter power spectra and compare (i) the halo model using a mass
function evaluated from these linear power spectra and (ii) an analytical fit
to the non-linear evolution of the linear power spectra. We optimistically
ignore the competing effect of baryons for this work. We find approach (ii) to
be conservative compared to approach (i). We evaluate cosmological constraints
using these methods, marginalising over four other cosmological parameters.
Using the more conservative method we find that a Euclid-like weak lensing
survey together with constraints from the Planck cosmic microwave background
mission primary anisotropies could achieve a lower limit on the particle mass
of 2.5 keV.Comment: 26 pages, 9 figures, minor changes to match the version accepted for
publication in JCA
Determining orbits for the Milky Way's dwarfs
We calculate orbits for the Milky Way dwarf galaxies with proper motions, and
compare these to subhalo orbits in a high resolution cosmological simulation.
We use this same simulation to assess how well are able to recover orbits in
the face of measurement errors, a time varying triaxial gravitational
potential, and satellite-satellite interactions. We find that, for present
measurement uncertainties, we are able to recover the apocentre r_a and
pericentre r_p to ~ 40%. However, even with better data the non-sphericity of
the potential and satellite interactions during group infall make the orbital
recovery more challenging. Dynamical friction, satellite mass loss and the mass
evolution of the main halo play a more minor role.
We apply our technique to nine Milky Way dwarfs with observed proper motions.
We show that their mean apocentre is consistent with the most massive subhalos
that form before z=10, lending support to the idea that the Milky Way dwarfs
formed before reionisation.Comment: 2 pages, 1 figure, conference proceeding in "Hunting for the Dark:
The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P.
Debattista & C.C. Popesc
- …