107 research outputs found

    Perceptions of genetic discrimination among people at risk for Huntington’s disease: a cross sectional survey

    Get PDF
    Objective To assess the nature and prevalence of genetic discrimination experienced by people at risk for Huntington’s disease who had undergone genetic testing or remained untested

    Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing

    Get PDF
    MicroRNAs (miRNAs) are prevalent regulatory RNAs that mediate gene silencing and play key roles in diverse cellular processes. While synthetic RNA-based regulatory systems that integrate regulatory and sensing functions have been demonstrated, the lack of detail on miRNA structure–function relationships has limited the development of integrated control systems based on miRNA silencing. Using an elucidated relationship between Drosha processing and the single-stranded nature of the miRNA basal segments, we developed a strategy for designing ligand-responsive miRNAs. We demonstrate that ligand binding to an aptamer integrated into the miRNA basal segments inhibits Drosha processing, resulting in titratable control over gene silencing. The generality of this control strategy was shown for three aptamer–small molecule ligand pairs. The platform can be extended to the design of synthetic miRNAs clusters, cis-acting miRNAs and self-targeting miRNAs that act both in cis and trans, enabling fine-tuning of the regulatory strength and dynamics. The ability of our ligand-responsive miRNA platform to respond to user-defined inputs, undergo regulatory performance tuning and display scalable combinatorial control schemes will help advance applications in biological research and applied medicine

    Strangeness Production close to Threshold in Proton-Nucleus and Heavy-Ion Collisions

    Full text link
    We discuss strangeness production close to threshold in p+A and A+A collision. Comparing the body of available K+, K0, K-, and Lambda data with the IQMD transport code and for some key observables as well with the HSD transport code, we find good agreement for the large majority of the observables. The investigation of the reaction with help of these codes reveals the complicated interaction of the strange particles with hadronic matter which makes strangeness production in heavy-ion collisions very different from that in elementary interactions. We show how different strange particle observables can be used to study the different facets of this interaction (production, rescattering and potential interaction) which finally merge into a comprehensive understanding of these interactions. We identify those observables which allow for studying (almost) exclusively one of these processes to show how future high precision experiments can improve our quantitative understanding. Finally, we discuss how the K+ multiplicity can be used to study the hadronic equation of state.Comment: 134 pages, pdf 3.3MB, version to be published in Physics Report

    Increased copy number at 3p14 in breast cancer

    Get PDF
    INTRODUCTION: The present study was conducted to investigate if chromosome band 3p14 is of any pathogenic significance in the malignant process of breast cancer. Genetic studies have implicated a tumour suppressor gene on chromosome arm 3p and we have proposed LRIG1 at 3p14 as a candidate tumour suppressor. The LRIG1 gene encodes an integral membrane protein that counteracts signalling by receptor tyrosine kinases belonging to the ERBB family. LRIG1 mRNA and protein are expressed in many tissues, including breast tissue. METHODS: In the present report we analysed the LRIG1 gene by fluorescence in situ hybridisation (FISH), LRIG1 mRNA by quantitative RT-PCR, and LRIG1 protein by western blot analysis. Two tumour series were analysed; one series consisted of 19 tumour samples collected between 1987 and 1995 and the other series consisted of 9 tumour samples with corresponding non-neoplastic breast tissues collected consecutively. RESULTS: The LRIG1 gene showed increased copy number in 11 out of 28 tumours (39%) and only one tumour showed a deletion at this locus. Increased LRIG1 copy number was associated with increased levels of LRIG1 mRNA (two of three tumours) and protein (four of four tumours) in the tumours compared to matched non-neoplastic breast tissue, as assessed by RT-PCR and western blot analysis. CONCLUSION: The molecular function of LRIG1 as a negative regulator of ERBB receptors questions the biological significance of increased LRIG1 copy number in breast cancer. We propose that a common, but hitherto unrecognised, breast cancer linked gene is located within an amplicon containing the LRIG1 locus at 3p14.3

    Challenges in Whole Exome Sequencing: An Example from Hereditary Deafness

    Get PDF
    Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ∼6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research
    corecore