222 research outputs found

    Methyl Bromide In Preindustrial Air: Measurements From an Antarctic Ice Core

    Get PDF
    This paper presents the first ice core measurements of methyl bromide (CH3Br). Samples from a shallow Antarctic ice core (Siple Dome, West Antarctica), ranging in mean gas dates from 1671 to 1942, had a mean CH3Br mixing ratio of 5.8 ppt. These results extend the existing historical record derived from air and Antarctic firn air to about 350 years before present. Model simulations illustrate that the ice core results are consistent with estimates of the impact of anthropogenic activity ( fumigation, combustion, and biomass burning) on the atmospheric CH3Br burden, given the large current uncertainties in the modern atmospheric CH3Br budget. A preindustrial scenario assuming no fumigation, no combustion, and a 75% reduction in biomass-burning sources yields aSouthern Hemisphere mean mixing ratio of 5.8 ppt, in good agreement with the ice core results. There is a significant imbalance between the known CH3Br sources and sinks in the modern atmospheric CH3Br budget. The ice core data do not sufficiently constrain the model to determine how much of the unknown source\u27\u27 was present in the preindustrial budget. The results do indicate that most of the southern hemispheric component of this unknown source\u27\u27 is not anthropogenic

    Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system

    Get PDF
    © 2015. American Geophysical Union. All Rights Reserved. The role of priming processes in the remineralization of terrestrially derived dissolved organic carbon (TDOC) in aquatic systems has been overlooked. We provide evidence for TDOC priming using a lab-based microcosm experiment in which TDOC was primed by the addition of 13C-labeled algal dissolved organic carbon (ADOC) or a 13C-labeled disaccharide (trehalose). The rate of TDOC remineralization to carbon dioxide (CO2) occurred 4.1±0.9 and 1.5±0.3 times more rapidly with the addition of trehalose and ADOC, respectively, relative to experiments with TDOC as the sole carbon source over the course of a 301h incubation period. Results from these controlled experiments provide fundamental evidence for the occurrence of priming of TDOC by ADOC and a simple disaccharide. We suggest that priming effects on TDOC should be considered in carbon budgets for large-river deltas, estuaries, lakes, hydroelectric reservoirs, and continental shelves. Key Points Priming of organic matter exists in aquatic systems Ramifications of this work have major implications on greenhouse gas emissions First evidence for lab conditions of priming setting stage for more fieldwork

    Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources

    Get PDF
    Ship-based Multi-Axis Differential Optical Absorption Spectroscopy measurements of iodine monoxide (IO) and atmospheric and seawater Gas Chromatography-Mass Spectrometer observations of methyl iodide (CH3I) were made in the Eastern Pacific marine boundary layer during April 2010 as a part of the HaloCarbon Air Sea Transect-Pacific (HaloCAST-P) scientific cruise. The presence of IO in the open ocean environment was confirmed, with a maximum differential slant column density of 5 × 1013 molecules cm−2 along the 1° elevation angle (corresponding to approximately 1 pptv) measured in the oligotrophic region of the Southeastern Pacific. Such low IO mixing ratios and their observed geographical distribution are inconsistent with satellite estimates and with previous understanding of oceanic sources of iodine. A strong correlation was observed between reactive iodine (defined as IO + I) and CH3I, suggesting common sources

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that  ∼  18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science

    A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 16 (2016): 10899-10910, doi:10.5194/acp-16-10899-2016.Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of −5 to −10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4–15.4) Gg yr−1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147–241) yr and that  ∼  18 (14–22)  % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air–sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26–43) yr.This research could not have been done without the support of our various institutions and the programs through which they support science, including funds at various times from NASA’s Upper Atmosphere Research Program, the US Department of Energy, NOAA’s Climate Program Office, the Atmospheric and Geosciences sections of the National Science Foundation, and the National Research Council of the US National Academies of Science

    Testing Gaussianity on Archeops Data

    Full text link
    A Gaussianity analysis using a goodness-of-fit test and the Minkowski functionals on the sphere has been performed to study the measured Archeops Cosmic Microwave Background (CMB) temperature anisotropy data for a 143 GHz Archeops bolometer. We consider large angular scales, greater than 1.8 degrees, and a large fraction of the North Galactic hemisphere, around 16%, with a galactic latitude b > 15 degrees. The considered goodness-of-fit test, first proposed by Rayner & Best (1989), has been applied to the data after a signal-to-noise decomposition. The three Minkowski functionals on the sphere have been used to construct a chi-square statistic using different thresholds. The first method has been calibrated using simulations of Archeops data containing the CMB signal and instrumental noise in order to check its asymptotic convergence. Two kind of maps produced with two different map-making techniques (coaddition and Mirage) have been analysed. Archeops maps for both Mirage and coaddition map-making, have been found to be compatible with Gaussianity. From these results we can exclude a dust and atmospheric contamination larger than 7.8% (90% CL). Also the non-linear coupling parameter f_{nl} can be constrained to be -800 < f_{nl} < 1100 at the 95% CL and on angular scales of 1.8 degrees. For comparison, the same method has been applied to data from the NASA WMAP satellite in the same region of sky. The 1-year and 3-year releases have been used. Results are compatible with those obtained with Archeops, implying in particular an upper limit for f_{nl} on degree angular scales.Comment: A&A accepted. The limits on the contamination and the fnl parameter have been improve

    Vegetation management with fire modifies peatland soil thermal regime

    Get PDF
    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15+years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15+years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15+years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching+6.2°C for daily mean temperatures and+19.6°C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15+years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands
    • …
    corecore